Globular clusters (GCs) are tracers of the gravitational potential of their host galaxies. Moreover, their kinematic properties may provide clues for understanding the formation of GC systems and their host galaxies. We use the largest set of GC velocities obtained so far of any elliptical galaxy to revise and extend the previous investigations ) of the dynamics of NGC 1399, the central dominant galaxy of the nearby Fornax cluster of galaxies. The GC velocities are used to study the kinematics, their relation with population properties, and the dark matter halo of NGC 1399. We have obtained 477 new medium-resolution spectra (of these, 292 are spectra from 265 individual GCs, 241 of which are not in the previous data set). with the VLT FORS 2 and Gemini South GMOS multi-object spectrographs. We revise velocities for the old spectra and measure velocities for the new spectra, using the same templates to obtain an homogeneously treated data set. Our entire sample now comprises velocities for almost 700 GCs with projected galactocentric radii between 6 and 100 kpc. In addition, we use velocities of GCs at larger distances published elsewhere. Combining the kinematic data with wide-field photometric Washington data, we study the kinematics of the metal-poor and metal-rich subpopulations. We discuss in detail the velocity dispersions of subsamples and perform spherical Jeans modelling. The most important results are: the red GCs resemble the stellar field population of NGC 1399 in the region of overlap. The blue GCs behave kinematically more erratic. Both subpopulations are kinematically distinct and do not show a smooth transition. It is not possible to find a common dark halo which reproduces simultaneously the properties of both red and blue GCs. Some velocities of blue GCs are only to be explained by orbits with very large apogalactic distances, thus indicating a contamination with GCs which belong to the entire Fornax cluster rather than to NGC 1399. Also, stripped GCs from nearby elliptical galaxies, particularly NGC 1404, may contaminate the blue sample. We argue in favour of a scenario in which the majority of the blue cluster population has been accreted during the assembly of the Fornax cluster. The red cluster population shares the dynamical history of the galaxy itself. Therefore we recommend to use a dark halo based on the red GCs alone. The dark halo which fits best is marginally less massive than the halo quoted previously. The comparison with X-ray analyses is satisfactory in the inner regions, but without showing evidence for a transition from a galaxy to a cluster halo, as suggested by X-ray work.
Abstract. Radial velocities of 94 galaxies brighter than about V tot = 20 mag in the direction of the central Fornax cluster have been measured1 . Except for 8 Fornax members, all galaxies lie in the background. Among the 8 members, there are 5 nucleated dwarf ellipticals that are already listed in the FCC (Ferguson 1989). Two of the 3 "new" members are very compact and have surface brightnesses comparable to globular clusters, however their luminosities are in the range of dwarf elliptical nuclei.The measured line indices (especially Mg2, Hβ, and iron) of the brighter of the compact objects suggest a solar metallicity, whereas the fainter compact object as well as the dE, Ns have line indices that are similar to those of old metal-poor globular clusters (GCs). However, with these data it is not possible to clearly classify the compact objects either as very bright globular clusters, isolated nuclei of dE, Ns, or even compact ellipticals.A background galaxy cluster at z = 0.11 has been found just behind the center of the Fornax cluster. This explains the excess population of galaxies reported in Paper I. The brightest galaxy of the background cluster lies only 1. 1 south of NGC 1399 and is comparable in absolute luminosity with the central Fornax galaxy itself.Key words: galaxies: clusters: Fornax clustergalaxies: distances and redshifts -galaxies: abundances -galaxies: dwarf Send offprint requests to: M. Hilker 1 Table 2 containing the position, magnitude and velocity of all galaxies is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html
As part of the Fornax Deep Survey with the ESO VLT Survey Telescope, we present new g and r bands mosaics of the SW group of the Fornax cluster. It covers an area of 3 × 2 square degrees around the central galaxy NGC 1316. The deep photometry, the high spatial resolution of OmegaCam and the large covered area allow us to study the galaxy structure, to trace stellar halo formation and look at the galaxy environment. We map the surface brightness profile out to 33 arcmin (∼ 200 kpc ∼ 15R e ) from the galaxy centre, down to µ g ∼ 31 mag arcsec −2 and µ r ∼ 29 mag arcsec −2 . This allow us to estimate the scales of the main components dominating the light distribution, which are the central spheroid, inside 5.5 arcmin (∼ 33 kpc), and the outer stellar envelope. Data analysis suggests that we are catching in act the second phase of the mass assembly in this galaxy, since the accretion of smaller satellites is going on in both components. The outer envelope of NGC 1316 still hosts the remnants of the accreted satellite galaxies that are forming the stellar halo. We discuss the possible formation scenarios for NGC 1316, by comparing the observed properties (morphology, colors, gas content, kinematics and dynamics) with predictions from cosmological simulations of galaxy formation. We find that i) the central spheroid could result from at least one merging event, it could be a pre-existing early-type disk galaxy with a lower mass companion, and ii) the stellar envelope comes from the gradual accretion of small satellites.
A deep survey of the Large Magellanic Cloud at ∼ 0.1−100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3 − 2.4 pending a flux increase by a factor > 3 − 4 over ∼ 2015 − 2035. Large-scale interstellar emission remains mostly out of reach of the survey if its > 10 GeV spectrum has a soft photon index ∼ 2.7, but degree-scale 0.1 − 10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1 − 10% of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within < 100 pc. Finally, the survey could probe the canonical velocity-averaged cross section for self-annihilation of weakly interacting massive particles for cuspy Navarro-Frenk-White profiles.
We study the kinematics and dynamics of the globular cluster system of NGC 1399, the brightest elliptical galaxy near the center of the Fornax cluster of galaxies. The observational data consists of medium-resolution spectra, obtained at the Very Large Telescope with FORS2 and the Mask Exchange Unit (MXU). Our sample comprises 468 radial velocities in the magnitude range 20 < m R < 23. This is the largest sample of globular cluster velocities around any galaxy obtained so far. Typical velocity uncertainties are 50 km s À1 , significantly improving on earlier samples. The radial range is 2 0 < r < 9 0 , corresponding to 11 kpc to 50 kpc of galactocentric distance. The shape of the velocity distribution of the sample is compatible with being a Gaussian distribution. However, under moderate error selection, a slight asymmetry is visible between high and low radial velocities. We find bright clusters with radial velocities below 800 km s À1 , while they are not found at the corresponding highvelocity side above 2000 km s À1 . There is the possibility that unbound clusters and/or objects in the foreground contaminate the NGC 1399 cluster sample. Under strong error selection, practically no objects are found with velocities lower than 800 km s À1 or higher than 2000 km s À1 . Since the extreme velocities influence the velocity dispersion considerably, uncertainty regarding the exact value of the dispersion remains. With the above velocity limits, we derive a projected velocity dispersion for the total sample of 274 AE 9 km s À1 which within the uncertainties remains constant over the entire radial range. Without any velocity restriction, it increases to 325 km s À1 . Guided by the bimodal color distribution of clusters, we distinguish between red clusters (CÀR > 1:6) and blue clusters (CÀR < 1:6), and find velocity dispersions for these groups of 255 AE 13 and 291 AE 14 km s À1 , respectively, again radially constant. Any possible rotation of either of these cluster populations is below the detection limit, with the exception of a weak signature of rotation for the blue clusters more distant than 6 0 . Spherical models point to a circular velocity of 419 AE 30 km s À1 , assuming isotropy for the red clusters. This value is constant out to 40 kpc. The inferred dark halo potential can be well represented by a logarithmic potential. A halo of the NFW type also provides a good fit to the observations. The orbital structure of the clusters can only be weakly constrained. It is consistent with isotropy for the red clusters and a slight tangential bias for the blue clusters. Some mass profiles derived from X-ray analyses do not agree with a constant circular velocity within our radial range, irrespective of its exact value. Interpreting the extreme low radial velocities as space velocities of bound clusters near their pericentric distances would require an extension of the cluster system of at least 200 kpc. Implications for formation scenarios of the cluster system are briefly commented on.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.