Introduction. Cerebral palsy is one of the most common non-progressive neurological disorders caused by fetal or infant brain injury. Current rehabilitation for children with cerebral palsy involves a series of measures, including physical training, special massage techniques, physiotherapy, treatment by certain positions and postures, use of supporting orthoses and fixation devices for walking, and special orthopedic suits facilitating verticalization and motor activity of a child. Over the last few decades, computerized stimulators and robotics with virtual reality systems have been actively used in neurorehabilitation. However, most of these systems did not show significant efficiency in rehabilitation of children with cerebral palsy. In the last few years, different non-invasive electrostimulation techniques have been considered innovative and can be applied independently or in combination with existing procedures. One of such techniques is translingual neurostimulation. Aim. This study aimed to evaluate the effectiveness of a combination of translingual neurostimulation and physical rehabilitation for children with cerebral palsy. Materials and methods. In this study, we observed 134 children (63 girls and 71 boys) with spastic diplegia aged 2–17 years (mean age is 7.8 years old ± 0.3). Depending on the type of rehabilitation therapy, the patients were divided into two groups: active (main) and control. Active group consisted of 94 children who received standard restorative treatment in combination with translingual neurostimulation, whereas the control group consisted of 40 children who received only standard rehabilitation treatment without translingual neurostimulation. Results. Both groups of patients showed positive dynamics; however, patients in the active group showed greater improvements as evidenced by all grading scales. Improvements were observed in children of all ages, and the results were mostly stable for 12 months. Conclusion. Translingual neurostimulation is a novel approach to neurorehabilitation that shows promising results, in addition to its proven effectiveness and safety. As a result of neurostimulation, the patient’s brain becomes more susceptible to the applied therapeutic procedures aimed at restoring motor control and formation of new motor skills, thereby markedly increasing the effectiveness of neurorehabilitation. This study broadens the perspectives in the use and further development of translingual neurostimulation in rehabilitation of children with cerebral palsy.
Introduction. Rehabilitation of children with cerebral palsy is one of the most difficult tasks in modern neurology. One of the promising areas is the combination of physiotherapy with methods of stimulation of various parts of the nervous system, among which functional electrical stimulation of muscles and nerves (FES) is distinguished.Purpose of research. Assessment of changes in the functional connectivity of neural networks in the brain in patients with cerebral palsy before and after translingual neurostimulation using functional MRI at rest.Materials and methods. Analyzed the results of changes in the functional connectivity of neural networks in the brain in 25 patients with cerebral palsy before and after translingual neurostimulation. A clinical examination was carried out with an assessment of complaints, anamnesis and an assessment on neurological scales, followed by standard and functional MRI of the brain at rest.Summary. In children with spastic diplegia, functional changes in neural networks with a predominance of processes of strengthening intra- and interhemispheric connections (p<0,05) were revealed, which correlates with clinical changes in the form of a decrease in spasticity and an improvement in motor skills.
Background. Spastic diplegia (Little’s disease) is the most common form of infantile cerebral palsy (ICP), leading to persistent motor and functional impairments. One promising area of rehabilitation is a combination of physical therapy with methods of stimulation of various parts of the nervous system, among which functional electrical stimulation of muscles and nerves is the most prominent.Objective. To study structural changes of cerebral white matter conduction pathways in patients with spastic diplegia after translingual neurostimulation using magnetic resonance tractography.Materials and Methods. An open single center-controlled study was conducted. A total of 18 children were examined. All patients underwent comprehensive MRI in two time points, before and after a course of translingual neurostimulation, on a tomograph with magnetic field induction 3.0 Tesla, which included a traditional protocol in 3 mutually perpendicular planes), and diffusion-weighted imaging — DWI (Diffusion-Weight Imaging).Results. All patients after neurostimulation showed clinical improvement of movement coordination and decrease of muscle tone with formation of new motor skills, improvement of limb motor function. Statistically significant decrease of spasticity index was revealed up to 17% for arms and 23% for legs, improvement of motor skills on all three scales.Conclusion. Translingual neurostimulation allows to affect all components of motor activity, as a result of which neuroplasticity processes are activated and the brain of patients with spastic diplegia becomes more receptive to motor rehabilitation aimed at restoration of motor control and formation of new motor skills.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.