We present a new, uniform analysis of the H i transmitted flux (F) and H i column density ($N_{\mathrm{H\,{\small I}}}$) distribution in the low-density IGM as a function of redshift z for 0 < z < 3.6 using 55 HST/COS FUV (Δz = 7.2 at z < 0.5), five HST/STIS + COS NUV (Δz = 1.3 at z ∼ 1) and 24 VLT/UVES, and Keck/HIRES (Δz = 11.6 at 1.7 < z < 3.6) AGN spectra. We performed a consistent, uniform Voigt profile analysis to combine spectra taken with different instruments, to reduce systematics and to remove metal-line contamination. We confirm previously known conclusions on firmer quantitative grounds in particular by improving the measurements at z ∼ 1. Two flux statistics at 0 < F < 1, the mean H i flux and the flux probability distribution function (PDF), show that considerable evolution occurs from z = 3.6 to z = 1.5, after which it slows down to become effectively stable for z < 0.5. However, there are large sightline variations. For the H i column density distribution function (CDDF, f ∝ $N_{\rm H\,{\small I}}^{-\beta }$) at $\log (N_{\mathrm{H\,{\small I}}}/1\, {\mathrm{cm}^{-2}})$ ∈ [13.5, 16.0], β increases as z decreases from β = 1.60 at z ∼ 3.4 to β = 1.82 at z ∼ 0.1. The CDDF shape at lower redshifts can be reproduced by a small amount of clockwise rotation of a higher-z CDDF with a slightly larger CDDF normalization. The absorption line number per z (dn/dz) shows a similar evolutionary break at z ∼ 1.5 as seen in the flux statistics. High-$N_{\mathrm{H\,{\small I}}}$ absorbers evolve more rapidly than low-$N_{\mathrm{H\,{\small I}}}$ absorbers to decrease in number or cross-section with time. The individual dn/dz shows a large scatter at a given z. The scatter increases towards lower z, possibly caused by a stronger clustering at lower z.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.