Today, healthcare has become one of the largest and most fast-paced industries due to the rapid development of digital healthcare technologies. The fundamental thing to enhance healthcare services is communicating and linking massive volumes of available healthcare data. However, the key challenge in reaching this ambitious goal is letting the information exchange across heterogeneous sources and methods as well as establishing efficient tools and techniques. Semantic Web (SW) technology can help to tackle these problems. They can enhance knowledge exchange, information management, data interoperability, and decision support in healthcare systems. They can also be utilized to create various e-healthcare systems that aid medical practitioners in making decisions and provide patients with crucial medical information and automated hospital services. This systematic literature review (SLR) on SW in healthcare systems aims to assess and critique previous findings while adhering to appropriate research procedures. We looked at 65 papers and came up with five themes: e-service, disease, information management, frontier technology, and regulatory conditions. In each thematic research area, we presented the contributions of previous literature. We emphasized the topic by responding to five specific research questions. We have finished the SLR study by identifying research gaps and establishing future research goals that will help to minimize the difficulty of adopting SW in healthcare systems and provide new approaches for SW-based medical systems’ progress.
Osteosarcoma is a high-grade malignant bone tumour for which neoadjuvant chemotherapy is a vital component of the treatment plan. Chemotherapy brings about the death of tumour tissues, and the rate of their death is an essential factor in deciding on further treatment. The necrosis quantification is now done manually by visualizing tissue sections through the microscope. This is a crude method that can cause significant inter-observer bias. The suggested system is an AI-based therapeutic decision-making tool that can automatically calculate the quantity of such dead tissue present in a tissue specimen. We employ U-Net++ and DeepLabv3+, pre-trained deep learning algorithms for the segmentation purpose. ResNet50 and ResNet101 are used as encoder parts of U-Net++ and DeepLabv3+, respectively. Also, we synthesize a dataset of 555 patches from 37 images captured and manually annotated by experienced pathologists. Dice loss and Intersection over Union (IoU) are used as the performance metrics. The training and testing IoU of U-Net++ are 91.78% and 82.64%, and its loss is 4.4% and 17.77%, respectively. The IoU and loss of DeepLabv3+ are 91.09%, 81.50%, 4.77%, and 17.8%, respectively. The results show that both models perform almost similarly. With the help of this tool, necrosis segmentation can be done more accurately while requiring less work and time. The percentage of segmented regions can be used as the decision-making factor in the further treatment plans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.