Osteosarcoma is a high-grade malignant bone tumour for which neoadjuvant chemotherapy is a vital component of the treatment plan. Chemotherapy brings about the death of tumour tissues, and the rate of their death is an essential factor in deciding on further treatment. The necrosis quantification is now done manually by visualizing tissue sections through the microscope. This is a crude method that can cause significant inter-observer bias. The suggested system is an AI-based therapeutic decision-making tool that can automatically calculate the quantity of such dead tissue present in a tissue specimen. We employ U-Net++ and DeepLabv3+, pre-trained deep learning algorithms for the segmentation purpose. ResNet50 and ResNet101 are used as encoder parts of U-Net++ and DeepLabv3+, respectively. Also, we synthesize a dataset of 555 patches from 37 images captured and manually annotated by experienced pathologists. Dice loss and Intersection over Union (IoU) are used as the performance metrics. The training and testing IoU of U-Net++ are 91.78% and 82.64%, and its loss is 4.4% and 17.77%, respectively. The IoU and loss of DeepLabv3+ are 91.09%, 81.50%, 4.77%, and 17.8%, respectively. The results show that both models perform almost similarly. With the help of this tool, necrosis segmentation can be done more accurately while requiring less work and time. The percentage of segmented regions can be used as the decision-making factor in the further treatment plans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.