A series of cationic Ir(III) complexes with the general formula (C/N)2Ir(N/N)(+)PF6- featuring bis-cyclometalated 1-phenylpyrazolyl-N,C2' (C/N) and neutral diimine (N/N, e.g., 2,2'-bipyridyl) ligands were synthesized and their electrochemical, photophysical, and electroluminescent properties studied. Density functional theory calculations indicate that the highest occupied molecular orbital of the compounds is comprised of a mixture of Ir d and phenylpyrazolyl-based orbitals, while the lowest unoccupied molecular orbital has predominantly diimine character. The oxidation and reduction potentials of the complexes can be independently varied by systematic modification of either the C/N or N/N ligands with donor or acceptor substituents. The electrochemical redox gaps (E(ox)-E(red)) were adjusted to span a range between 2.39 and 3.08 V. All of the compounds have intense absorption bands in the UV region assigned to 1(pi-pi*) transitions and weaker charge-transfer (CT) transitions that extend to the visible region. The complexes display intense luminescence both in fluid solution and as neat solids at 298 K that is assigned to emission from a triplet metal-ligand-to-ligand CT (3MLLCT) excited state. The energy of the 3MLLCT state varies in nearly direct proportion to the size of the electrochemical redox gap, which leads to emission colors that vary from red to blue. Three of the (C/N)2Ir(N/N)(+)PF6- complexes were used as active materials in single-layer light-emitting electrochemical cells (LECs). Single-layer electroluminescent devices were fabricated by spin-coating the Ir complexes onto an ITO-PEDOT/PSS substrate followed by deposition of aluminum contacts onto the organic film. Devices were prepared that give blue, green, and red electroluminescence spectra (lambda(max) = 492, 542, and 635 nm, respectively), which are nearly identical with the photoluminescence spectra of thin films of the same materials. The single-layer LECs give peak external quantum efficiencies of 4.7, 6.9, and 7.4% for the blue, green, and red emissive devices, respectively.
The photophysical properties for a series of facial (fac) cyclometalated Ir(III) complexes (fac-) ppz or F2ppz and C ∧ N′ ) ppy or F2ppy), and fac-Ir(C ∧ C′) 3 (C ∧ C′ ) 1-phenyl-3-methylbenzimidazolyl (pmb)) have been studied in dilute 2-methyltetrahydrofuran (2-MeTHF) solution in a temperature range of 77-378 K. Photoluminescent quantum yields (Φ) for the 10 compounds at room temperature vary between near zero and unity, whereas all emit with high efficiency at low temperature (77 K). The quantum yield for fac-Ir(ppy) 3 (Φ ) 0.97) is temperature-independent. For the other complexes, the temperature-dependent data indicates that the luminescent efficiency is primarily determined by thermal deactivation to a nonradiative state. Activation energies and rate constants for both radiative and nonradiative processes were obtained using a Boltzmann analysis of the temperature-dependent luminescent decay data. Activation energies to the nonradiative state are found to range between 1600 and 4800 cm -1 . The pre-exponential factors for deactivation are large for complexes with C ∧ N ligands (10 11 -10 13 s -1 ) and significantly smaller for fac-Ir(pmb) 3 (10 9 s -1 ). The kinetic parameters for decay and results from density functional theory (DFT) calculations of the triplet state are consistent with a nonradiative process involving Ir-N (Ir-C for fac-Ir(pmb) 3 ) bond rupture leading to a five-coordinate species that has triplet metal-centered ( 3 MC) character. Linear correlations are observed between the activation energy and the energy difference calculated for the emissive and 3 MC states. The energy level for the 3 MC state is estimated to lie between 21 700 and 24 000 cm -1 for the fac-Ir(C ∧ N) 3 complexes and at 28 000 cm -1 for fac-Ir(pmb) 3 .
Two approaches are reported to achieve efficient blue to near-UV emission from triscyclometalated iridium(III) materials related to the previously reported complex, fac-Ir(ppz)(3) (ppz = 1-phenylpyrazolyl-N,C(2)'). The first involves replacement of the phenyl group of the ppz ligand with a 9,9-dimethyl-2-fluorenyl group, i.e., fac-tris(1-[(9,9-dimethyl-2-fluorenyl)]pyrazolyl-N,C(2)')iridium(III), abbreviated as fac-Ir(flz)(3). Crystallographic analysis reveals that both fac-Ir(flz)(3) and fac-Ir(ppz)(3) have a similar coordination environment around the Ir center. The absorption and emission spectra of fac-Ir(flz)(3) are red shifted from those of fac-Ir(ppz)(3). The fac-Ir(flz)(3) complex gives blue photoluminescence (PL) with a high efficiency (lambda(max) = 480 nm, phi(PL) = 0.38) at room temperature. The lifetime and quantum efficiency were used to determine the radiative and nonradiative rates (1.0 x 10(4) and 2.0 x 10(4) s(-1), respectively). The second approach utilizes N-heterocyclic carbene (NHC) ligands to form triscyclometalated Ir complexes. Complexes with two different NHC ligands, i.e., iridium tris(1-phenyl-3-methylimidazolin-2-ylidene-C,C(2)'), abbreviated as Ir(pmi)(3), and iridium tris(1-phenyl-3-methylbenzimidazolin-2-ylidene-C,C(2)'), abbreviated as Ir(pmb)(3), were both isolated as facial and meridianal isomers. Comparison of the crystallographic structures of the fac- and mer-isomers of Ir(pmb)(3) with the corresponding Ir(ppz)(3) isomers indicates that the imidazolyl-carbene ligand has a stronger trans influence than pyrazolyl and, thus, imparts a greater ligand field strength. Both fac-Ir(pmi)(3) and fac-Ir(pmb)(3) complexes display strong metal-to-ligand-charge-transfer absorption transitions in the UV (lambda = 270-350 nm) and phosphoresce in the near-UV region (E(0)(-)(0) = 380 nm) at room temperature with phi(PL) values of 0.02 and 0.04, respectively. The radiative decay rates for fac-Ir(pmi)(3) and fac-Ir(pmb)(3) (5 x 10(4) s(-1) and 18 x 10(4) s(-1), respectively) are somewhat higher than that of fac-Ir(flz)(3), but the nonradiative rates are two orders of magnitude faster (i.e., (2-4) x 10(6) s(-1)).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.