Outer membrane vesicles (OMVs) are extracellular vesicles released from the surface of Gram-negative bacteria, including Escherichia coli. Several gene-deficient mutants relating to envelope stress (nlpI and degP) and phospholipid accumulation in the outer leaflet of the outer membrane (mlaA and mlaE) increase OMV production. This study examined the combinatorial deletion of these genes in E. coli and its effect on OMV production. The nlpI and mlaE double-gene-knockout mutant (ΔmlaEΔnlpI) showed the highest OMV production. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis-based quantitative analysis showed that OMV production by strain ΔmlaEΔnlpI was~30 times that by the wild-type (WT). In addition, to evaluate the protein secretion capacity of OMVs, a green fluorescent protein (GFP) fused with outer membrane protein W (OmpW) was expressed in OMVs. Western blot analysis showed that GFP secretion through OMVs reached 3.3 mg/L in the culture medium of strain ΔmlaEΔnlpI/gfp, 500 times that for the WT. Our approach using OMVs for extracellular protein secretion in E. coli is an entirely new concept compared with existing secretion systems.
Escherichia coli produces extracellular vesicles called outer membrane vesicles (OMVs) by releasing a part of its outer membrane. We previously reported that the combined deletion of nlpI and mlaE, related to envelope structure and phospholipid accumulation in the outer leaflet of the outer membrane, respectively, resulted in the synergistic increase of OMV production. In this study, the analysis of ΔmlaEΔnlpI cells using quick-freeze, deep-etch electron microscopy (QFDE-EM) revealed that plasmolysis occurred at the tip of the long axis in cells and that OMVs formed from this tip. Plasmolysis was also observed in the single-gene knockout mutants ΔnlpI and ΔmlaE. This study has demonstrated that plasmolysis was induced in the hypervesiculating mutant E. coli cells. Furthermore, intracellular vesicles and multilamellar OMV were observed in the ΔmlaEΔnlpI cells. Meanwhile, the secretion of recombinant green fluorescent protein (GFP) expressed in the cytosol of the ΔmlaEΔnlpI cells was more than 100 times higher than that of WT and ΔnlpI, and about 50 times higher than that of ΔmlaE in the OMV fraction, suggesting that cytosolic components were incorporated into outer-inner membrane vesicles (OIMVs) and released into the extracellular space. Additionally, QFDE-EM analysis revealed that ΔmlaEΔnlpI sacculi contained many holes noticeably larger than the mean radius of the peptidoglycan (PG) pores in wild-type (WT) E. coli. These results suggest that in ΔmlaEΔnlpI cells, cytoplasmic membrane materials protrude into the periplasmic space through the peptidoglycan holes and are released as OIMVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.