The boundary layer transition under instationary afflux conditions as present in the stages of turbomachines is investigated. A model for the transition process is introduced by means of time-space distributions of the turbulent spots during transition and schematic drawings of the instantaneous boundary layer thicknesses. To confirm this model, measurements of the transition with zero and favorable pressure gradient are performed.
The boundary layer transition under instationary afflux conditions as present in the stages of turbomachines is investigated. A model for the transition process is introduced by means of time-space distributions of the turbulent spots during transition and schematic drawings of the instantaneous boundary layer thicknesses. To confirm this model, measurements of the transition with zero and favorable pressure gradient are performed.
Sc [±] Schmidt number Sh [±] Sherwood number t [s] time x [m] geometrical coordinate Greek Symbols b [m/s] mass transfer coefficient d [m] wave length References [1] Kottke, V.; Blenke, H.; Schmidt, K.G.; Eine remissionsphotometrische Meûmethode zur Bestimmung örtlicher Stoffübergangskoeffizienten bei Zwangskonvektion in Luft, Wärme-und Stoffübertragung 10 (1977) pp. 9±21. [2] Kühnel, W.; Kottke, V.; An experimental method for visualization and determination of mass transfer at solid walls in liquid flow.
In the side-chambers of radial turbomachinery, which are rotor–stator cavities, complex flow patterns develop that contribute substantially to axial thrust on the shaft and frictional torque on the rotor. Moreover, leakage flow through the side-chambers may occur in both centripetal and centrifugal directions which significantly influences rotor–stator cavity flow and has to be carefully taken into account in the design process: precise correlations quantifying the effects of rotor–stator cavity flow are needed to design reliable, highly efficient turbomachines. This paper presents an experimental investigation of centripetal leakage flow with and without pre-swirl in rotor–stator cavities through combining the experimental results of two test rigs: a hydraulic test rig covering the Reynolds number range of 4 × 10 5 ≤ R e ≤ 3 × 10 6 and a test rig for gaseous rotor–stator cavity flow operating at 2 × 10 7 ≤ R e ≤ 2 × 10 8 . This covers the operating ranges of hydraulic and thermal turbomachinery. In rotor–stator cavities, the Reynolds number R e is defined as R e = Ω b 2 ν with angular rotor velocity Ω , rotor outer radius b and kinematic viscosity ν . The influence of circumferential Reynolds number, axial gap width and centripetal through-flow on the radial pressure distribution, axial thrust and frictional torque is presented, with the through-flow being characterised by its mass flow rate and swirl angle at the inlet. The results present a comprehensive insight into the flow in rotor–stator cavities with superposed centripetal through-flow and provide an extended database to aid the turbomachinery design process.
The designers of radial turbomachinery need detailed information on the impact of the side chamber flow on axial thrust and torque. A previous paper investigated centripetal flow through narrow rotor–stator cavities and compared axial thrust, rotor torque and radial pressure distribution to the case without through-flow. Consequently, this paper extends the investigated range to centrifugal through-flow as it may occur in the hub side chamber of radial turbomachinery. The chosen operating conditions are representative of high-pressure centrifugal compressors used in, for example, carbon capture and storage applications as well as hydrogen compression. To date, only the Reynolds number range up to Re=2·107 has been investigated for centrifugal through-flow. This paper extends the range to Reynolds numbers of Re=2·108 and reports results of experimental and numerical investigations. It focuses on the radial pressure distribution in the rotor–stator cavity and shows the influence of the Reynolds number, cavity width and centrifugal mass flow rate. It therefore extends the range of available valid data that can be used to design radial turbomachinery. Additionally, this analysis compares the results to data and models from scientific literature, showing that in the higher Reynolds number range, a new correlation is required. Finally, the analysis of velocity profiles and wall shear delineates the switch from purely radial outflow in the cavity to outflow on the rotor and inflow on the stator at high Reynolds numbers in comparison to the results reported by others for Reynolds numbers up to Re=2·107.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.