Roaming mechanisms, involving the brief generation of a neutral atom or molecule that stays in the vicinity before reacting with the remaining atoms of the precursor, are providing valuable insights into previously unexplained chemical reactions. Here, the mechanistic details and femtosecond time-resolved dynamics of H3+ formation from a series of alcohols with varying primary carbon chain lengths are obtained through a combination of strong-field laser excitation studies and ab initio molecular dynamics calculations. For small alcohols, four distinct pathways involving hydrogen migration and H2 roaming prior to H3+ formation are uncovered. Despite the increased number of hydrogens and possible combinations leading to H3+ formation, the yield decreases as the carbon chain length increases. The fundamental mechanistic findings presented here explore the formation of H3+, the most important ion in interstellar chemistry, through H2 roaming occurring in ionic species.
Strong-field laser-matter interactions often lead to exotic chemical reactions. Trihydrogen cation formation from organic molecules is one such case that requires multiple bonds to break and form. We present evidence for the existence of two different reaction pathways for H3 + formation from organic molecules irradiated by a strong-field laser. Assignment of the two pathways was accomplished through analysis of femtosecond time-resolved strong-field ionization and photoion-photoion coincidence measurements carried out on methanol isotopomers, ethylene glycol, and acetone. Ab initio molecular dynamics simulations suggest the formation occurs via two steps: the initial formation of a neutral hydrogen molecule, followed by the abstraction of a proton from the remaining CHOH2+ fragment by the roaming H2 molecule. This reaction has similarities to the H2 + H2 + mechanism leading to formation of H3 + in the universe. These exotic chemical reaction mechanisms, involving roaming H2 molecules, are found to occur in the ~100 fs timescale. Roaming molecule reactions may help to explain unlikely chemical processes, involving dissociation and formation of multiple chemical bonds, occurring under strong laser fields.
A key question concerning the three-body fragmentation of polyatomic molecules is the distinction of sequential and concerted mechanisms, i.e., the stepwise or simultaneous cleavage of bonds. Using laser-driven fragmentation of OCS into O^{+}+C^{+}+S^{+} and employing coincidence momentum imaging, we demonstrate a novel method that enables the clear separation of sequential and concerted breakup. The separation is accomplished by analyzing the three-body fragmentation in the native frame associated with each step and taking advantage of the rotation of the intermediate molecular fragment, CO^{2+} or CS^{2+}, before its unimolecular dissociation. This native-frame method works for any projectile (electrons, ions, or photons), provides details on each step of the sequential breakup, and enables the retrieval of the relevant spectra for sequential and concerted breakup separately. Specifically, this allows the determination of the branching ratio of all these processes in OCS^{3+} breakup. Moreover, we find that the first step of sequential breakup is tightly aligned along the laser polarization and identify the likely electronic states of the intermediate dication that undergo unimolecular dissociation in the second step. Finally, the separated concerted breakup spectra show clearly that the central carbon atom is preferentially ejected perpendicular to the laser field.
A comparative study of bond rearrangement is reported for the double ionization of three triatomic molecules: carbon dioxide, carbonyl sulfide, and water (D2O). Specifically we study the formation of the molecular cation AC + from the edge atoms of a triatomic molecular dication ABC 2+ following double ionization by intense, short (23 fs, 790 nm) laser pulses. The comparison is made using the double ionization branching ratio of each molecule, thereby minimizing differences due to differing ionization rates. The rearrangement branching ratio is highest for water, which has a bent initial geometry, while CO2 and OCS are linear molecules. The angular distribution of O + 2 fragments arising from CO2 is essentially isotropic, while SO + from OCS and D + 2 from D2O are aligned with the laser polarization. In the CO2 and D2O cases, the angular distributions of the bond rearrangement channels are different from the angular distributions of the dominant dissociative double ionization channels CO + + O + and OD + + D + . Only the angular distribution of SO + from OCS is both aligned with the laser polarization and similar to the angular distribution of the largest dissociative channel, CO + + S + . The mixed behavior observed from the angular distributions of the different molecules stands in contrast to the relative consistency of the magnitude of the bond rearrangement branching ratio.I.
Conformational isomerism plays a crucial role in defining the physical and chemical properties and biological activity of molecules ranging from simple organic compounds to complex biopolymers. However, it is often a significant challenge to differentiate and separate these isomers experimentally as they can easily interconvert due to their low rotational energy barrier. Here, we use the momentum correlation of fragment ions produced after inner-shell photoionization to distinguish conformational isomers of 1,2-dibromoethane (C2H4Br2). We demonstrate that the three-body breakup channel, C2H4 + + Br+ + Br+, contains signatures of both sequential and concerted breakup, which are decoupled to distinguish the geometries of two conformational isomers and to quantify their relative abundance. The sensitivity of our method to quantify these yields is established by measuring the relative abundance change with sample temperature, which agrees well with calculations. Our study paves the way for using Coulomb explosion imaging to track subtle molecular structural changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.