We present the catalog of high Galactic-latitude (|b| > 10 • ) X-ray sources detected in the first 37-month data of Monitor of All-sky X-ray Image (MAXI) / Gas Slit Camera (GSC). To achieve the best sensitivity, we develop a background model of the GSC that well reproduces the data based on the detailed on-board calibration. Source detection is performed through image fit with the Poisson likelihood algorithm. The catalog contains 500 objects detected in the 4-10 keV band with significance of s D,4−10keV ≥ 7. The limiting sensitivity is ≈ 7.5 × 10 −12 ergs cm −2 s −1 (≈ 0.6 mCrab) in the 4-10 keV band for 50% of the survey area, which is the highest ever achieved as an all-sky survey mission covering this energy band. We summarize the statistical properties of the catalog and results from cross matching with the Swift/BAT 70-month catalog, the metacatalog of X-ray detected clusters of galaxies, and the MAXI/GSC 7-month catalog. Our catalog lists the source name (2MAXI), position and its error, detection significances and fluxes in the 4-10 keV and 3-4 keV bands, their hardness ratio, and basic information of the likely counterpart available for 296 sources.
We analyzed continuous MAXI/GSC data of the X-ray binary pulsar 4U 1626-67 from 2009 October to 2013 September, and determined the pulse period and the pulse-period derivative for every 60-d interval by the epoch folding method. The obtained periods are consistent with those provided by the Fermi/GBM pulsar project. In all the 60-d intervals, the pulsar was observed to spin up, with the spin-up rate positively correlated with the 2-20 keV flux. We applied the accretion torque model proposed by Ghosh & Lamb (1979, ApJ, 234, 296) to the MAXI/GSC data, as well as the past data including both spin-up and spin-down phases. The Ghosh & Lamb relation was confirmed to successfully explain the observed relation between the spin-up/down rate and the flux. By comparing the model-predicted luminosity with the observed flux, the source distance was constrained as 5-13 kpc, which is consistent with that by Chakrabarty (1998, ApJ, 492, 342). Conversely, if the source distance is assumed, the data can constrain the mass and radius of the neutron star, because the Ghosh & Lamb model depends on these parameters. We attempted this idea, and found that an assumed distance of, e.g., 10 kpc gives a mass in the range of 1.81-1.90 solar mass, and a radius of 11.4-11.5 km, although these results are still subject to considerable systematic uncertainties other than that in the distance.
The accretion-induced pulse-period changes of the Be/X-ray binary pulsar X Persei were investigated over a period of 1996 January to 2017 September. This study utilized the monitoring data acquired with the RXTE/ASM in 1.5-12 keV and MAXI/GSC in 2-20 keV. The source intensity changed by a factor of 5-6 over this period. The pulsar was spinning down for 1996-2003, and has been spinning up since 2003, as already reported. The spin up/down rate and the 3-12 keV flux, determined every 250 d, showed a clear negative correlation, which can be successfully explained by the accretion torque model proposed by Ghosh & Lamb (1979). When the mass, radius and distance of the neutron star are allowed to vary over a range of 1.0-2.4 solar masses, 9.5-15 km, and 0.77-0.85 kpc, respectively, the magnetic field strength of B = (4 − 25) × 10 13 G gave the best fits to the observation. In contrast, the observed results cannot be explained by the values of B ∼ 10 12 G previously suggested for X Persei, as long as the mass, radius, and distance are required to take reasonable values. Assuming a distance of 0.81 ± 0.04 kpc as indicated by optical astrometry, the mass of the neutron star is estimated as M = 2.03 ± 0.17 solar masses.
In the last 10 years, since its last giant outburst in 2006, regular X-ray outbursts (type I) were detected every periastron passage in the Be X-ray binary EXO 2030+375. Recently, however, it was reported that the source started to show a peculiar behavior: its X-ray flux decreased significantly and type I outbursts were missed in several cases. At the same time, the spin frequency of the neutron star, which had been increasing steadily since the end of the 2006 giant outburst, reached a plateau. Very recent observations indicate that the source is now starting to spin down. These observed phenomena have a striking similarity with those which took place 20 years ago, just before the source displayed a sudden orbital phase shift of the outburst peak (1995). This historical event occurred at the time exactly between the two giant outbursts (1985 and 2006). These phenomena suggest the system to have an underlying periodicity of 10.5 years between orbital phase shifts and/or giant outbursts. The suggested periodicity may reflect some long-period dynamics in the circumstellar disk of the Be star, due, e.g., to the Kozai-Lidov effect. A model generating such a periodic change of the Be disk, namely Kozai-Lidov oscillations in the Be disk, is discussed. If this behavior is really periodical, another phase shift of the X-ray outburst peak is predicted to occur around 2016 December.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.