Although prevention of feline calcivirus (FCV) infection by vaccination has been attempted, and isolation of FCV, development of the disease, and a few fatal cases in vaccinated cats have been reported. Fifteen FCV strains isolated from cats that had been vaccinated with commercially available FCV vaccines (F9, FCV-255, and FC-7) were genogrouped. Molecular analysis of viral genomes involved the construction of a phylogenetic tree of capsid genes using the NJ method. Cat anti-F9 serum and rabbit anti-FCV-255 serum were used for virus neutralization tests. Molecular phylogenetic analysis of the amino acid sequences of 15 virus isolates and those of the previously published and GenBank-deposited 9 global and 14 Japanese strains showed that 8 (53%) of the 15 virus isolates as well as the vaccine strains F9 and FCV-255 belonged to genogroup I (G(A)I), and 7 (47%) belonged to genogroup II (G(A)II). Of the 8 G(A)I strains, 2 were isolated from cats that had been vaccinated with an F9 strain live vaccine, 5 from cats vaccinated with an FCV-255-derived vaccine, and 1 from a cat vaccinated with an FC-7-derived vaccine. Of the 7 GAll strains, 5 were isolated from cats that had been vaccinated with the F9 strain live vaccine, 1 from a cat vaccinated with the FCV-255-derived vaccine, and 1 from a cat vaccinated with the FC-7-derived vaccine. These results indicate that more vaccine breakdown strains isolated from the cats vaccinated with the F9 strain-derived vaccine belong to G(A)II than to G(A)I, whereas more vaccine breakdown strains isolated from the cats vaccinated with the FCV-255 strain-derived vaccine belong to G(A)I than to G(A)II, and that when the FC-7 strain-derived vaccine is used, the vaccine breakdown strains belong almost equally to G(A)I and G(A)II. Thus, the genogroups of virus isolates varied with the vaccine strain used (p < 0.05). On the other hand, the neutralizing titres of feline anti-F9 serum and rabbit anti-FCV-255 serum against the 15 isolates were very low, showing no relationships between neutralizing antibody titres and genogroups. The DNA sequence identities between the virus isolates and the vaccine strains were low, at 70.6-82.9%, and no strains were found to have sequences derived from the vaccine strains. Alignment of amino acid sequences showed that the G(A)I or G(A)II virus isolates from the F9-vaccinated cats differed at position 428 of the 5' hypervariable region (HVR) of capsid region of the F9 strain, whereas those from the FCV-255-vaccinated cats differed at positions 438, 453, and 460 of the 5'HVR of capsid region E of the F9 strain. We speculate that these differences influence genogrouping. The amino acid changes within the F9 linear epitopes common to G(A)I and G(A)II were noted at positions 450, 451, 457 of 5'HVR of the capsid region E in the isolates from F9-derived vaccine-treated cats, and 449, 450, and 451 of 5'HVR of capsid region E in the isolates from FCV-255-derived vaccine-treated cats, suggesting that these amino acid changes are involved in escapes. These results sugg...
The levels of relatedness among strains of Erysipelothrix serovar 7 isolated from dogs with endocarditis were estimated by performing DNA-DNA hybridization experiments with the type strains of Erysipelothrix rhusiopathiae and Erysipelothrix tonsillarum. All the canine strains exhibited more than 81% hybridization with the type strain of E. tonsillarum but less than 13% hybridization with the type strain of E. rhusiopathiae. Based on DNA-DNA hybridization results we confirmed that serovar 7 of the isolates from dogs with endocarditis were conclusively identified as E. tonsillarum. These results strongly indicate that some strains of genomic E. tonsillarum are a canine pathogen.
We report a case of vertical transmission of HCV in a mother infected with both HCV and HIV. Our case suggests that coinfection with HIV, by causing an immune dysfunction, might be one of the risk factors for the transmission of HCV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.