In the orbitofrontal olfactory area (LPOF) which was delineated in a previous paper, the capacity for odor discrimination was studied and compared with that in the anterior pyriform cortex (AP), the medial portion of the amygdala (MA), and the olfactory bulb (OB). Unanesthetized monkeys were used and eight odors were applied. 1. In the OB, 12.5% of the cells responded to only one odor, and the cells which responded to five odors were most numerous (25%). The total of the cells which responded to two, three, and four odors was 52%, which was less than the total of the cells responding to three, four, and five odors (67.5%). A small number oc cells responded to all eight odors (2.5%). The responses were classified as an increase (+type), a decrease (-type), or no change (no-type) in the rate of spike discharge. 2. In the AP and MA, no difference in the response patterns was found. The cells which responded to only one odor were 12.3% of the total, and the cells which responded to three different kinds of odors were most numerous (34.3%). The total of the cells responding to two, three, and four odors was 80%, much more than that in the OB. In addition, no cell responded to all eight odors. Concerning the response types, an increase followed by a decrease, or vice versa, in the rate of spike discharges (mixed-type) was observed which did not appear in the OB. Thus, an advance was found in the processing of olfactory information when compared with the OB. 3. A most striking finding in the LPOF was that 50% of the cells responded to only one odor. The cells which responded to two, three, and four odors decreased in this order, and no cell responded to more than five odors. These cells never responded to light or sound. 4. Using three very similar odors and five very different odors, it was apparent that the ability to discriminate odors of the same category is far more advanced in the LPOF than in the lower olfactory areas; and, in contrast, the lower olfactory areas also play a significant role in the discrimination of odors which belong to different categories. 5. It was concluded that the capacity for odor discrimination definitely improves along the olfactory nervous system from the lower to the higher areas. It is highly probable that a fine and sepcific discrimination of odors is performed in the LPOF.
1. Evoked potentials restricted to the magnocellular portion of the mediodorsal nucleus (MDmc) of the thalamus were recorded after stimulation of the olfactory bulb (OB) and the posterior orbital cortex of the frontal lobe (OFC). Potentials evoked by stimulation of OB were probably trans-synaptically elicited, while potentials evoked by stimulation of OFC were probably a result of antidromic activation. 2. The area in which stimulation could elicit antidromic evoked potentials in MDmc was located in the centroposterior portion of OFC (CPOF). This area corresponds approximately to Walker's (80) area 13 and to von Bonin and Bailey's (9) area FF, and is situated medial and just anterior to a previously identified olfactory area, the lateroposterior portion of OFC (LPOF), which receives olfactory impulses through the hypothalamus. 3. Using extracellular microelectrodes, 58 neurons that responded with short latencies to OFC stimulation were identified in MDmc. To determine whether these neurons were activated antidromically by CPOF stimulation, three conventional neurophysiological criteria were applied; 20 of 58 neurons satisfied all the three criteria. Hence, they were concluded to be thalamocortical relay (TCR) neurons. 4. Intracellular recording of MDmc neurons disclosed that CPOF stimulation elicits an antidromic spike potential accompanied by an afterhyperpolarization. This hyperpolarization was presumed to be due to concurrent stimulation of inhibitory orbitothalamic fibers. It was also shown that EPSP-like depolarizations with superimposed spike potentials often occurred in the middle of the afterhyperpolarization. 5. Intracellular recording of MDmc neurons strongly suggested that the remaining 38 neurons that did not satisfy one of the three criteria were also TCR neurons. 6. These studies provide electrophysiological evidence for a transthalamic olfactory pathway from OB through MDmc to CPOF. 7. Using an extracellular recording technique, responses of neurons to eight odors were examined in CPOF and MDmc of unanesthetized awake monkeys. When these results were compared with the responses of neurons to the same odors in OB, prepyriform-amygdaloid area, and LPOF, it was concluded that the newly found transthalamic olfactory pathway to CPOF is very different in function from the previously demonstrated transhypothalamic olfactory pathway to LPOF.
An olfactory projection area was studied in monkeys anesthetized with Nembutal. 1. Evoked potentials were recorded when the olfactory bulb (OB) was electrically stimulated in the lateroposterior portion of the orbitofrontal cortex (LPOF). However, those potentials disappeared when the anterior pyriform cortex (AP) (probably together with the medial portion of the amygdala (MA)) was aspirated or electrically destroyed. 2. In nearly the entire hypothalamic region, evoked potentials were recorded by the same stimulation of the OB. When the hypothalamic region was stimulated, evoked potentials were recorded in the LPOF. 3. The evoked potentials in the LPOF due to the OB stimulation never disappeared even when the thalamus was extensively aspirated or destroyed electrically, but they did disappear when the anterolateral and dorsoposterior portions of the hypothalamus were absorbed or electrocoagulated. 4. Evoked potentials in the mediodorsal nucleus (MD) of the thalamus were recorded when the OB was stimulated. When this nucleus was stimulated, evoked potentials were observed in the broad extent of the orbitofrontal cortex anterior to the LPOF, but never in the LPOF itself. 5. Monkeys were conditioned to discriminate two odors. When the LPOF was removed, such ability strikingly decreased; but when other areas in the prefrontal cortex were removed, the ability decreased only slightly. 6. It was concluded that there exists an olfactory pathway from the OB to the LPOF through the AP (and probably the MA) and the hypothalamus, but none through the thalamus, and that the LPOF plays an important role in the discrimination of odors. 7. It was proved that the entorhinal cortex (ER) is neither located as an intermediate olfactory area nor is it situated as a higher area than the LPOF in the newly found olfactory pathway stated above. It may be a link between the high olfactory area and the limbic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.