The accuracy and flexibility of the Monte Carlo based RapidArc QA system were demonstrated. Good machine performance and accurate dose distribution delivery of RapidArc plans were observed. The sampling used in the TPS optimization algorithm was found to be adequate.
The authors have presented a method for making the Varian IAEA compliant 6 MV FFF phase space file of the TrueBeam linac compatible with BEAMnrc/DOSXYZnrc. After benchmarking the modified phase space against measurement, they have demonstrated its potential for use in MC based quality assurance of complex delivery techniques.
In the present study, we describe a method based on the analysis of the dynamic MLC log files (DynaLog) generated by the controller of a Varian linear accelerator in order to perform patient‐specific IMRT QA. The DynaLog files of a Varian Millennium MLC, recorded during an IMRT treatment, can be processed using a MATLAB‐based code in order to generate the actual fluence for each beam and so recalculate the actual patient dose distribution using the Eclipse treatment planning system. The accuracy of the DynaLog‐based dose reconstruction procedure was assessed by introducing ten intended errors to perturb the fluence of the beams of a reference plan such that ten subsequent erroneous plans were generated. In‐phantom measurements with an ionization chamber (ion chamber) and planar dose measurements using an EPID system were performed to investigate the correlation between the measured dose changes and the expected ones detected by the reconstructed plans for the ten intended erroneous cases. Moreover, the method was applied to 20 cases of clinical plans for different locations (prostate, lung, breast, and head and neck). A dose‐volume histogram (DVH) metric was used to evaluate the impact of the delivery errors in terms of dose to the patient. The ionometric measurements revealed a significant positive correlation false(normalR2=0.9993false) between the variations of the dose induced in the erroneous plans with respect to the reference plan and the corresponding changes indicated by the DynaLog‐based reconstructed plans. The EPID measurements showed that the accuracy of the DynaLog‐based method to reconstruct the beam fluence was comparable with the dosimetric resolution of the portal dosimetry used in this work false(3normal%/3 mmfalse). The DynaLog‐based reconstruction method described in this study is a suitable tool to perform a patient‐specific IMRT QA. This method allows us to perform patient‐specific IMRT QA by evaluating the result based on the DVH metric of the planning CT image (patient DVH‐based IMRT QA).PACS number: 87.55.Qr
A Monte Carlo (MC) validation of the vendor‐supplied Varian TrueBeam 6 MV flattened (6X) phase‐space file and the first implementation of the Siebers‐Keall MC MLC model as applied to the HD120 MLC (for 6X flat and 6X flattening filterfree (6X FFF) beams) are described. The MC model is validated in the context of VMAT patient‐specific quality assurance. The Monte Carlo commissioning process involves: 1) validating the calculated open‐field percentage depth doses (PDDs), profiles, and output factors (OF), 2) adapting the Siebers‐Keall MLC model to match the new HD120‐MLC geometry and material composition, 3) determining the absolute dose conversion factor for the MC calculation, and 4) validating this entire linac/MLC in the context of dose calculation verification for clinical VMAT plans. MC PDDs for the 6X beams agree with the measured data to within 2.0% for field sizes ranging from 2 × 2 to 40 × 40 cm2. Measured and MC profiles show agreement in the 50% field width and the 80%‐20% penumbra region to within 1.3 mm for all square field sizes. MC OFs for the 2 to 40 cm2 square fields agree with measurement to within 1.6%. Verification of VMAT SABR lung, liver, and vertebra plans demonstrate that measured and MC ion chamber doses agree within 0.6% for the 6X beam and within 2.0% for the 6X FFF beam. A 3D gamma factor analysis demonstrates that for the 6X beam, > 99% of voxels meet the pass criteria (3%/3 mm). For the 6X FFF beam, > 94% of voxels meet this criteria. The TrueBeam accelerator delivering 6X and 6X FFF beams with the HD120 MLC can be modeled in Monte Carlo to provide an independent 3D dose calculation for clinical VMAT plans. This quality assurance tool has been used clinically to verify over 140 6X and 16 6X FFF TrueBeam treatment plans.PACS number: 87.55.K‐
Purpose: Ventricular tachycardia (VT) is a rapid, abnormal heart rhythm that can lead to sudden cardiac death. Current treatment options include antiarrhythmic drug therapy and catheter ablation, both of which have only modest efficacy and have potential complications. Cardiac radiosurgery has the potential to be a noninvasive and efficient treatment option for VT. Cardiac motion, however, must be accounted for to ensure accurate dose delivery to the target region. Cardiac synchronized volumetric modulated arc therapy (CSVMAT) aims to minimize the dose delivered to normal tissues by synchronizing beam delivery with a cardiac signal, irradiating only during the quiescent intervals of the cardiac cycle (when heart motion is minimal) and adjusting the beam delivery speed in response to heart rate changes. Methods: A CSVMAT plan was adapted from a conventional VMAT plan and delivered on a Varian TrueBeam linear accelerator. The original VMAT plan was divided into three interleaved CSVMAT phases, each consisting of alternating beam-on and beam-off segments synchronized to a sample heart rate. Trajectory log files were collected for the original VMAT and CSVMAT deliveries and the dose distributions were measured with Gafchromic EBT-XD film. Results: Analysis of the trajectory log files showed successful synchronization with the sample cardiac signal. Film analysis comparing the original VMAT and CSVMAT dose distributions returned a gamma passing rate of 99.14% (2%/2 mm tolerance). Conclusions: The film results indicated excellent agreement between the dose distributions of the original and cardiac synchronized beam deliveries. This study demonstrates a proof of principle cardiac synchronization strategy for precise radiation treatment plan delivery and adjustment to a variable heart rate. The cardiac synchronized technique may be advantageous in radioablation for VT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.