Traditional technologies and equipment for extraction do not meet the needs of industrial production in the constant increase in the volume of finished products due to the low efficiency of extraction of target components, their high energy consumption and duration. This makes it relevant to search for modern, more effective technologies and equipment, the use of which will significantly increase overall production productivity, reduce overall specific energy consumption, improve the quality of the finished products and safety of processes for the environment. The paper analyzes and generalizes methods for intensifying extraction processes from plant materials. The most effective ways to intensify hydrodynamic processes include methods based on cavitation phenomena. Transformation and redistribution of energy, which occur during the formation and collapse of vapor bubbles due to the creation of a high difference in pressure, temperature, and potential, contribute to a significant increase in the efficiency of dynamic effects on complex heterogeneous systems during extraction. Cavitation technologies ensure ecological purity and safety of the process, make it possible to accelerate mass transfer processes, activate the extractant, obtain a high yield of biologically active substances (BAS) and maintain their properties. Acoustic and hydrodynamic cavitation are most commonly used. Modern research is conducted in search of new solutions to optimize technologies, as well as improvement of cavitation equipment. Examples of hydrodynamic cavitation devices of static and dynamic types are cylindrical and disk rotor-pulsation devices, valve-type high-pressure homogenizers, pulsating dispersers, centrifugal pumps and Venturi tubes. They are used to intensify the processes at the stages of preparation of plant raw materials, activation of the extractant, as well as the extraction itself. Static-type cavitation devices based on the Venturi tube have a number of advantages in terms of design, technological and economic solution.
The use of discrete-pulse energy input (DPEI) mechanisms in various industries has become a reliable tool for the intensification of heat and mass transfer processes in various technological lines and reduction of specific energy consumption. The study of structural transformations in heterogeneous systems under influence of mechanisms of DPEI opens up new possibilities for their use as evidenced by this article. Under certain conditions it is possible to prepare a mushroom suspension with specified characteristics for drying and enhance medicinal properties of the obtained powder product while retaining all valuable components of feedstock. The article presents the results of research of DPEI-processing effect of the shiitake mushroom fruit body on the on physical and mechanical properties and structural characteristics of the mushroom suspension. The influence of hydro module, temperature of the suspension and the layout of the working bodies of the rotor-pulse apparatus (RPA) on its dynamic viscosity was studied and the possibility of reducing viscosity by 2-3 times is shown. An analysis of mushroom suspension microstructure has showed that with a certain layout of the working bodies of the RPA it is possible to control the degree of dispersion of particles and change the spatial structure of the aggregates in the volume of the dispersion medium. It is determined that self-organization of spatial aggregates from individual hyphae in such suspensions occurs over time. Moreover, the smaller the size of hyphae (≤ 25 microns after the RPA of the first version of the arrangement: rotor-stator-rotor) are, the larger the size of the spatial aggregates are formed. After the RPA with the second layout option, the fragments of hyphae had sizes ≥ 50 μm, but the dimensions of the spatial aggregates were three times smaller. It is found that after three times passing of the mushroom suspension through the RPA and its subsequent treatment in the cavitation device, the dynamic viscosity of the suspension is reduced by 20%. Confirmation of the the effectiveness of the DPEI-mechanisms in obtaining mushroom suspension is that due to the hydromechanical destruction of the polysaccharide structures of the chitin-glucan complex of the shiitake mushroom the content of the bioavailable complex of water-soluble oncostatic and immunoregulatory polysaccharides in the powder obtained by drying the mushroom suspension in an experimental spray dryer increased 6 times. References 13, figures 6.
The article considers whether a shiitake basidiomycete can be processed into powder. This mushroom is a source of valuable nutrients: it contains, on a dry basis, 18.76% of protein, 74.5% of carbohydrates, 1% of lipids, and 5.73% of ash. It has been determined that to obtain a uniform mushroom suspension, it is advisable to use the mechanisms of discrete-pulse energy input, which is an effective tool to influence the high-strength structural elements of heterogeneous systems of different nature. It has been determined that the mechanostructural properties of a mushroom suspension as an object of spray drying need to be changed. Studies of the microstructure have shown that in a suspension obtained from a whole fruiting body, particles of the insoluble fractions of a shiitake mushroom aggregate into chaotic clusters. These are spatial associates up to 3–4 mm in size, with individual hyphae of their caps or their fragments that are significantly shorter (10–15 μm) than the hyphae of the stems (50–5000 µm). The three-cycle processing of the suspension obtained from a whole mushroom by discrete-pulse energy input led to a decrease in the average particle size by 2.3 times. The same processing of the mushroom suspension obtained from the shiitake caps made it possible to reduce the average particle size by 20 times (to δmax≤100–150 μm). Microstructural analysis of the powder obtained from the whole fruiting body of the mushroom has shown that while the size of the particles generally ranges 4–120 µm, the bulk of them (80–85%) are quite large agglomerates, 40–120 µm in size. The powder obtained from the caps of the mushroom had smaller particles (ranging 4–60 µm), mostly round-shaped, and 75–80% of these particles were 4–20 µm in size. This improved its drying conditions and increased the yield from the spray dryer up to 92% (while the yield of powder prepared from the whole shiitake mushroom was less than 50%). The complex of studies carried out has shown the advantages of obtaining a mushroom suspension from the caps of shiitake mushrooms. The use of mechanisms of discrete-pulse energy input allows a 6-fold increase in the bioavailable health-improving polysaccharide complex contained in the powder from shiitake caps, as compared with the powder obtained from mushroom’s whole fresh fruiting body.
Recently, the demand for concentrates and dry powders from natural fruit and berry raw materials has been growing in the food industry. Spray drying is a method that is widely used to increase the shelf life of food products. However, obtaining dry concentrates from clarified, unclarified juices, as well as juices with pulp, by the spraying method has certain difficulties. This is due to the fact that apple juices and purees contain a complex of organic acids (malic, citric, etc.) in combination with a large number of simple carbohydrates. These substances are the main factors of the viscoplastic state of the dried particles in the heated air in the drying chamber. Thermoplastic (adhesive) properties of the material to be dried in the chamber of the spray dryer and hygroscopic in the state of dried powders complicate the conditions for their timely removal from the chamber, separation, unloading, and storage. As a result, the presence of such properties worsens the organoleptic and physicochemical characteristics of dry powders, reduces product yield, and also complicates the operating conditions of drying equipment. The use of structuring additives of various types, which include protein products of various origins, contributes to the improvement of drying conditions. The aim of the work was to study the kinetic characteristics of dehydration of drops of apple juice and compositions with milk proteins in order to determine the feasibility of their use as structuring additives for the preparation of powdered health products based on apple juice by spraying. The research results showed the expediency of using a complex of skim milk proteins and whey protein concentrate as structuring additives. It has been proven that their use improves the structuring and vapor-conducting properties of the material during drying, due to which it is possible to obtain powder products with minimal final moisture while preserving valuable bioactive components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.