High background noise is an impediment to signal detection and perception. We report the use of multiple solutions to improve signal perception in the acoustic and visual modality by the Bornean rock frog, Staurois parvus. We discovered that vocal communication was not impaired by continuous abiotic background noise characterised by fast-flowing water. Males modified amplitude, pitch, repetition rate and duration of notes within their advertisement call. The difference in sound pressure between advertisement calls and background noise at the call dominant frequency of 5578 Hz was 8 dB, a difference sufficient for receiver detection. In addition, males used several visual signals to communicate with conspecifics with foot flagging and foot flashing being the most common and conspicuous visual displays, followed by arm waving, upright posture, crouching, and an open-mouth display. We used acoustic playback experiments to test the efficacy-based alerting signal hypothesis of multimodal communication. In support of the alerting hypothesis, we found that acoustic signals and foot flagging are functionally linked with advertisement calling preceding foot flagging. We conclude that S. parvus has solved the problem of continuous broadband low-frequency noise by both modifying its advertisement call in multiple ways and by using numerous visual signals. This is the first example of a frog using multiple acoustic and visual solutions to communicate in an environment characterised by continuous noise.
Mutualistic relationships between vertebrates and plants apart from the pollen and seeddispersal syndromes are rare. At first view, carnivorous pitcher plants of the genus Nepenthes seem to be highly unlikely candidates for mutualistic interactions with animals, as they form dimorphic terrestrial and aerial pitchers that trap arthropods and small vertebrates. Surprisingly, however, the aerial pitchers of Nepenthes rafflesiana variety elongata are poor insect traps, with low amounts of insectattractive volatile compounds and low amounts of digestive fluid. Here, we show that N. rafflesiana elongata gains an estimated 33.8 per cent of the total foliar nitrogen from the faeces of Hardwicke's woolly bats (Kerivoula hardwickii hardwickii) that exclusively roost in its aerial pitchers. This is the first case in which the faeces-trapping syndrome has been documented in a pitcher plant that attracts bats and only the second case of a mutualistic association between a carnivorous plant and a mammal to date.
Summary 1.Several hypotheses have been proposed to explain the structure of multi-species assemblages. Among these, abiotic environmental factors and biotic processes are often favoured. Several recent studies examining anuran communities identified environmental factors to be only of minor importance in the composition of leaf-litter and canopy assemblages in pristine forests. Instead, spatial effects and spatially structured environments were considered more important. 2. In this study, we investigated whether these findings could also be confirmed for very heterogeneous stream habitats in the primary rainforest of the Ulu Temburong National Park, Brunei Darussalam. We thus investigated anuran assemblage compositions on 50 stream sites with regard to environmental and spatial influences. 3. Cross-product correlations indicated that both factors (spatial and environmental parameters) determined assemblage composition of anurans. Environment itself may be spatially structured, yet this interrelation did not contribute to the explainable variation of frog community compositions within the study area. 4. Detailed analyses of the environmental parameters with nonmetric multidimensional scaling revealed that community structure was mostly affected by three major environmental characters: stream turbidity, river size and the density of understorey vegetation. Based on these habitat characteristics, we assigned species to three distinct habitat guilds. 5. The results underline the importance of riparian habitat heterogeneity in pristine forests in structuring anuran assemblages. We conclude that different anuran assemblages, that is, leaf litter, canopy and stream communities, follow different assemblage rules and thus are not directly comparable.
Tree frogs climb smooth surfaces utilising capillary forces arising from an air-fluid interface around their toe pads, whereas torrent frogs are able to climb in wet environments near waterfalls where the integrity of the meniscus is at risk. This study compares the adhesive capabilities of a torrent frog to a tree frog, investigating possible adaptations for adhesion under wet conditions. We challenged both frog species to cling to a platform which could be tilted from the horizontal to an upside-down orientation, testing the frogs on different levels of roughness and water flow. On dry, smooth surfaces, both frog species stayed attached to overhanging slopes equally well. In contrast, under both low and high flow rate conditions, the torrent frogs performed significantly better, even adhering under conditions where their toe pads were submerged in water, abolishing the meniscus that underlies capillarity. Using a transparent platform where areas of contact are illuminated, we measured the contact area of frogs during platform rotation under dry conditions. Both frog species not only used the contact area of their pads to adhere, but also large parts of their belly and thigh skin. In the tree frogs, the belly and thighs often detached on steeper slopes, whereas the torrent frogs increased the use of these areas as the slope angle increased. Probing small areas of the different skin parts with a force transducer revealed that forces declined significantly in wet conditions, with only minor differences between the frog species. The superior abilities of the torrent frogs were thus due to the large contact area they used on steep, overhanging surfaces. SEM images revealed slightly elongated cells in the periphery of the toe pads in the torrent frogs, with straightened channels in between them which could facilitate drainage of excess fluid underneath the pad.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.