Long-term potentiation of synaptic transmission in the hippocampus is the primary experimental model for investigating the synaptic basis of learning and memory in vertebrates. The best understood form of long-term potentiation is induced by the activation of the N-methyl-D-aspartate receptor complex. This subtype of glutamate receptor endows long-term potentiation with Hebbian characteristics, and allows electrical events at the postsynaptic membrane to be transduced into chemical signals which, in turn, are thought to activate both pre- and postsynaptic mechanisms to generate a persistent increase in synaptic strength.
SUMMARY1. The after-effects of repetitive stimulation of the perforant path fibres to the dentate area of the hippocampal formation have been examined with extracellular micro-electrodes in rabbits anaesthetized with urethane.2. In fifteen out of eighteen rabbits the population response recorded from granule cells in the dentate area to single perforant path volleys was potentiated for periods ranging from 30 min to 10 hr after one or more conditioning trains at 10-20/sec for 10-15 sec, or 100/sec for 3-4 sec.3. The population response was analysed in terms of three parameters: the amplitude of the population excitatory post-synaptic potential (e.p.s.p.), signalling the depolarization of the granule cells, and the amplitude and latency of the population spike, signalling the discharge of the granule cells.4. All three parameters were potentiated in 29% of the experiments; in other experiments in which long term changes occurred, potentiation was confined to one or two ofthe three parameters. A reduction in the latency of the population spike was the commonest sign of potentiation, occurring in 57 % of all experiments. The amplitude of the population e.p.s.p. was increased in 43 %, and of the population spike in 40 %, of all experiments.5. During conditioning at 10-20/sec there was massive potentiation of the population spike ('frequency potentiation'). The spike was suppressed during stimulation at 100/sec. Both frequencies produced long-term potentiation.6. The results suggest that two independent mechanisms are responsible T. V. P. BLISS AND T. LOMIO for long-lasting potentiation: (a) an increase in the efficiency of synaptic transmission at the perforant path synapses; (b) an increase in the excitability of the granule cell population.
Two facts about the hippocampus have been common currency among neuroscientists for several decades. First, lesions of the hippocampus in humans prevent the acquisition of new episodic memories; second, activity-dependent synaptic plasticity is a prominent feature of hippocampal synapses. Given this background, the hypothesis that hippocampus-dependent memory is mediated, at least in part, by hippocampal synaptic plasticity has seemed as cogent in theory as it has been difficult to prove in practice. Here we argue that the recent development of transgenic molecular devices will encourage a shift from mechanistic investigations of synaptic plasticity in single neurons towards an analysis of how networks of neurons encode and represent memory, and we suggest ways in which this might be achieved. In the process, the hypothesis that synaptic plasticity is necessary and sufficient for information storage in the brain may finally be validated.
The induction of long-term potentiation (LTP) in the dentate gyrus of the hippocampus is associated with a rapid and robust transcription of the immediate early gene Zif268. We used a mutant mouse with a targeted disruption of Zif268 to ask whether this gene, which encodes a zinc finger transcription factor, is required for the maintenance of late LTP and for the expression of long-term memory. We show that whereas mutant mice exhibit early LTP in the dentate gyrus, late LTP is absent when measured 24 and 48 hours after tetanus in the freely moving animal. In both spatial and non-spatial learning tasks, short-term memory remained intact, whereas performance was impaired in tests requiring long-term memory. Thus, Zif268 is essential for the transition from short- to long-term synaptic plasticity and for the expression of long-term memories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.