In many cases, (processed) wastewater or thermal effluents are discharged into the marine environment, rivers or lakes. To accurately determine the dispersion, recirculation and environmental impacts of outfall plumes, it is important to be able to model the different characteristics of the outfall plume in detail - from the near field (metres around the outfall) to the far field (up to kilometres away). The solution for engineering practice is to combine different types of models (near and far field models) that each focus on specific scales, with corresponding optimised resolutions and processes. However, to adequately describe the hydrodynamic processes on these different scales, it is essential to couple these models in a dynamic and comprehensive way. To achieve this, a dynamic coupling between the open-source Delft3D-FLOW far field model and the CORMIX near field expert system is proposed. This coupled modelling system is able to use the computed far field ambient conditions in the near field computations and, conversely, to use the initial near field dilution and mixing behaviour in the far field model. Preliminary results are presented to provide a first indication of the potential of the method for modelling the complete trajectory of effluent outfall plumes, allowing an accurate assessment of the environmental effects and the design of possible mitigating measures.
Recent acoustic Doppler current profiler (ADCP)-measurements in the Scheldt estuary near Antwerp, Belgium, revealed anomalous, i.e. anti-clockwise circulations in a left bend during the major part of the flood period; these circulations were established shortly after the turn of the tide. During ebb, anti-clockwise circulations persisted, as predicted by classical theory. These data were analysed with a 3D and a 1DV-model. The 3D simulations reveal that the anomalous circulations are found when salinity is included in the computations-without salinity "normal" circulations were found. From analytical and 1DV simulations, it is concluded that a longitudinal salinity gradient @S=@x may induce a near-bed maximum in flow velocity reversing the direction of the secondary currents. The 1DV-model was then used to assess the contribution of various processes one by one. It was found that because of a reduction in vertical mixing, the vertical velocity profile is not at equilibrium during the first phase of accelerating tide, further enhancing the effects of @S=@x. A small vertical salinity gradient @S=@z appeared to have a very large effect as the crosscurrents of the secondary circulations induced by @S=@x became an order of larger magnitude. However, at the site under consideration, the effects of transverse salinity gradients, generated by differential advection in the river bend, were dominant: adverse directions of the secondary circulations were found even when the vertical velocity profile became more regular with a more or less logarithmic shape, i.e. when the effects of @S=@x and @S=@z did not play a dominant role anymore. It is argued that data on the secondary velocity structure, which can be measured easily owing to today's developments in ADCP equipment, may serve as an indicator for the accuracy at which the salinity field is computed with 3D numerical models. Moreover, the large effect of the salinity structure on the velocity field must have a large impact on the morphological development of estuaries, which should therefore be accounted for in morphological modelling studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.