The Payload Technology Validation Section (Future mission preparation Office) at ESTEC is in charge of specific mission oriented validation activities, for science and robotic exploration missions, aiming at reducing development risks in the implementation phase. These activities take place during the early mission phases or during the implementation itself. In this framework, a test set up to characterize the quantum efficiency of near infrared detectors has been developed.The first detector to be tested will an HAWAII-2RG detector with a 2.5um cut off, it will be used as commissioning device in preparation to the tests of prototypes European detectors developed under ESA funding. The capability to compare on the same setup detectors from different manufacturers will be a unique asset for the future mission preparation office. This publication presents the performances of the quantum efficiency test bench to prepare measurements on the HAWAII-2RG detector. A SOFRADIR Saturn detector has been used as a preliminary test vehicle for the bench. A test set up with a lamp, chopper, monochromator, pinhole and off axis mirrors allows to create a spot of 1mm diameter between 700nm and 2.5um.The shape of the beam has been measured to match the rms voltage read by the Merlin Lock -in amplifier and the amplitude of the incoming signal. The reference detectors have been inter-calibrated with an uncertainty up to 3 %. For the measurement with HAWAII-2RG detector, the existing cryostat [1] has been modified to adapt cold black baffling, a cold filter wheel and a sapphire window. An statistic uncertainty of ±2.6% on the quantum efficiency on the detector under test measurement is expected.
The reduction of systematic effects is necessary to improve the accuracy in imaging and astrometry. For example, in Euclid Mission which aims at carrying out accurate measurements of dark energy and quantifying precisely its role in the evolution of the Universe, systematic effects need at be controlled to a level better than 10 −7 (Euclid, Science Book). To achieve this goal, a high-level of knowledge of the system point spread function (PSF) is required. This paper follows the concept-paper presented at the last SPIE conference 1 and gives the recent developments achieved in the design of the test bench for the intrapixel sensitivity measurements. The measurement technique we use is based on the projection of a high spatial resolution periodic pattern on the detector using the self-imaging property of a new class of diffractive objects named continuously self-imaging gratings (CSIG) and developed at ONERA. The principle combines the potential of global techniques, which make measurements at once on the whole FPA, and the accuracy of spot-scan-based techniques, which provide high local precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.