Patch-clamp measurements on freshly isolated embryonic chicken osteoclasts revealed three distinct types of voltage-dependent K+ conductance. The first type of conductance, present in 72% of the cells, activated at membrane potentials less negative than -30 to -20 mV and reached full activation at +40 mV. It activated with a delay, reached a peak value, and then inactivated with a time constant of =z1.5 s. Inactivation was complete or almost so. Recovery from inactivation, at -70 mV, had a time constant of roughly 1 s. The conductance could be blocked, at least partly, by 4 mM 4-aminopyridine. The second type of conductance (present in all cells) activated at membrane potentials more negative than -40 to -80 mV and reached full activation at -130 mV. Activation potential and maximal conductance were dependent on the extracellular K+ concentration. Inactivation of the conductance first became apparent at membrane potentials more negative than -100 mV and was a two-exponential process. The conductance could be blocked by external 5 mM Cs' ions. The third type of conductance (present in all cells) activated at membrane potentials more positive than +30 mV. Generally, the conductance did not inactivate.
Skeletal tissues contain, apart from cells of the osteogenic and chondrogenic lineage, cells of hemopoietic origin, e.g., macrophages, osteoclasts, and their precursors. In the present study we examined the sensitivity for extracellular ATP4- of the above-mentioned cell types in freshly isolated, bone-derived cell populations and in explanted fetal metatarsal bones. Cells of hemopoietic origin reacted to the presence of ATP4- with an increased permeability for impermeant cytotoxic molecules, e.g., ethidium bromide (EB), thiocyanate (KSCN), and an increased non-ion selective membrane conductance. As a consequence, these cells could be killed by a short treatment with adenosine-5' triphosphate (ATP)+KSCN. On the other hand, cells of nonhemopoietic origin (e.g., osteoblasts, chondrocytes) were found to be insensitive to ATP4- in this respect. These cells survived the treatment without apparent damage to their alkaline phosphatase activities, osteogenic potentials, and osteoclast induction capacities. The elimination of the endogenous cells of hemopoietic origin from bone tissue or cell populations derived therefrom offers the possibility to study the properties and functions of osteogenic or chondrogenic cells without interference by the presence of cells of hemopoietic origin. It also allows the study of interactions between osteogenic cells and selected cell populations of hemopoietic origin in coculture experiments.
The properties of five monoclonal antibodies raised against isolated osteoclasts are described. Osteoclasts were isolated from medullary bone of egg-laying female quails. Mice were immunized with cell preparations consisting for about 10% of multinucleated osteoclasts. A large number of monoclonal antibodies against cell surface antigens were obtained, five of which were extensively characterized by their interactions with different tissues of the quail and their cross-reactivity with other species. Two monoclonals (OC 5.3 and OC 6.8), recognize surface antigens present on osteoclasts, monocytes, granulocytes and endothelial cells, but not on osteoblasts, osteocytes, fibroblasts, lymphocytes, erythrocytes and others. The three other monoclonal antibodies are specific for multinucleated osteoclasts in bone tissue but recognize some cell surface structures in other tissues. Antibody OC 6.9, which in bone tissue stains primarily the surface area of the osteoclast that is adjacent to the resorbing bone surface, also interacts with bile capillaries in the liver and with specific, but not yet identified parts of the nephron. The antibodies OC 6.1 and OC 6.3 interact with Kupffer cells in the liver and tissue macrophages of small intestine. In view of the possible fallacies inherent to the use of cell surface markers for the demonstration of cell relationship and origin, definite conclusions can not yet be made. The fact that the osteoclast, the Kupffer cell and the intestine macrophage are the only cells in bone, bone marrow, liver, kidney and intestine, that share the same surface antigen recognized by monoclonals OC 6.1 and OC 6.3, suggests, however, a common origin for osteoclasts and a number of well described tissue macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.