Assessing the accuracy of nearshore numerical models—such as SWAN—is important to ensure their effectiveness in representing physical processes and predicting flood hazards. In particular, for application to coastal wetlands, it is important that the model accurately represents wave attenuation by vegetation. In SWAN, vegetation might be implemented either implicitly, using an enhanced bottom friction; or explicitly represented as drag on an immersed body. While previous studies suggest that the implicit representation underestimates dissipation, field data has only recently been used to assess fully submerged vegetation. Therefore, the present study investigates the performance of both the implicit and explicit representations of vegetation in SWAN in simulating wave attenuation over a natural emergent marsh. The wave and flow modules within Delft3D are used to create an open-ocean model to simulate offshore wave conditions. The domain is then decomposed to simulate nearshore processes and provide the boundary conditions necessary to run a standalone SWAN model. Here, the implicit and explicit representations of vegetation are finally assessed. Results show that treating vegetation simply as enhanced bottom roughness (implicitly) under-represents the complexity of wave-vegetation interaction and, consequently, underestimates wave energy dissipation (error > 30%). The explicit vegetation representation, however, shows good agreement with field data (error < 20%).
Much of the United States Atlantic coastline continues to undergo subsidence due to post glacial settlement and ground water depletion. Combined with eustatic sea level rise (SLR), this contributes to an increased rate of relative SLR. In this work, we utilize the ADvanced CIRCulation model to project storm surges across coastal North Carolina. Recent hurricanes Irene and Matthew are simulated considering SLR and subsidence estimates for 2100. Relative to present day conditions, storm surge susceptible regions increase by 27% (Irene) to 40% (Matthew) due to subsidence. Combined with SLR (+ 74 cm), results suggest more than a doubling of areal flood extent for Irene and more than a three-fold increase for Hurricane Matthew. Considering current regional population distributions, this translates to an increase in at-risk populations of 18% to 61% due to subsidence. Even further, exposed populations are projected to swell relative to Matthew and Irene baseline simulations (8200 and 28,500) by more than 70,000 in all SLR scenarios (79,400 to 133,600). While increases in surge inundation are driven primarily by SLR in the region, there remains a substantial contribution due to vertical land movement. This outlines the importance of exploring spatially variable land movement in surge prediction, independent of SLR.
The Southern Brazilian Coast is highly susceptible to storm surges that often lead to coastal flooding and erosive processes, significantly impacting coastal communities. In addition, climate change is expected to result in expressive increases in wave heights due to more intense and frequent storms, which, in conjunction with sea-level rise (SLR), has the potential to exacerbate the impact of storm surges on coastal communities. The ability to predict and simulate such events provides a powerful tool for coastal risk reduction and adaptation. In this context, this study aims to investigate how accurately storm surge events can be simulated in the Southwest Atlantic Ocean employing the coupled ADCIRC+SWAN hydrodynamic and phase-averaged wave numerical modeling framework given the significant data scarcity constraints of the region. The model’s total water level (TWL) and significant wave height (Hs) outputs, driven by different sources of meteorological forcing, i.e., the Fifth Generation of ECMWF Atmospheric Reanalysis (ERA 5), the Climate Forecast System Version 2 (CFSv2), and the Global Forecast System (GFS), were validated for three recent storm events that affected the coast (2016, 2017, and 2019). In order to assess the potentially increasing storm surge impacts due to sea-level rise, a case study was implemented to locally evaluate the modeling approach using the most accurate model setup for two 2100 SLR projections (RCP 4.5 and 8.5). Despite a TWL underestimation in all sets of simulations, the CFSv2 model stood out as the most consistent meteorological forcing for the hindcasting of the storm surge and waves in the numerical model, with an RMSE range varying from 0.19 m to 0.37 m, and an RMSE of 0.56 m for Hs during the most significant event. ERA5 was highlighted as the second most accurate meteorological forcing, while adequately simulating the peak timings. The SLR study case demonstrated a possible increase of up to 82% in the TWL during the same event. Despite the limitations imposed by the lack of continuous and densely distributed observational data, as well as up to date topobathymetric datasets, the proposed framework was capable of expanding TWL and Hs information, previously available for a handful of gauge stations, to a spatially distributed and temporally unlimited scale. This more comprehensive understanding of such extreme events represents valuable knowledge for the potential implementation of more adequate coastal management and engineering practices for the Brazilian coastal zone, especially under changing climate conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.