Impact of oxygen bonding on the atomic structure and photoluminescence properties of Si-rich silicon nitride thin films J. Appl. Phys. 112, 073514 (2012) Electron spin resonance features of the Ge Pb1 dangling bond defect in condensation-grown (100)Si/SiO2/Si1−xGex/SiO2 heterostructures J. Appl. Phys. 112, 074501 (2012) Capacitance spectroscopy study of deep levels in Cl-implanted 4H-SiC J. Appl. Phys. 112, 063717 (2012) Investigation of defect levels in Cs2Hg6S7 single crystals by photoconductivity and photoluminescence spectroscopies J. Appl. Phys. 112, 063702 (2012) Flat bands near Fermi level of topological line defects on graphite A method to deduce energy distributions of defects in the band gap of a semiconductor by measuring the complex admittance of a junction is proposed. It consists of calculating the derivative of the junction capacitance with respect to the angular frequency of the ac signal corrected by a factor taking into account the band bending and the drop of the ac signal over the space charge region of the junction. Numerical modeling demonstrates that defect distributions in energy can be reconstructed by this method with high accuracy. Defect distributions of polycrystalline Cu͑In,Ga͒Se 2 thin films are determined by this method from temperature dependent admittance measurements on heterojunctions of Cu͑In,Ga͒Se 2 with ZnO that are used as efficient thin film solar cells.
We report the first measurements of inclusive W and Z boson cross sections times the corresponding leptonic branching ratios for pp collisions at √ s = 1.96 TeV based on the decays of the W and Z bosons into electrons and muons. The data were recorded with the CDF II detector at the Fermilab 4Tevatron and correspond to an integrated luminosity of 72.0 ± 4.3 pb −1 . We test e-µ lepton universality in W decays by measuring the ratio of the W → µν to W → eν cross sections and determine a value of 0.991 ± 0.004(stat.) ± 0.011(syst.) for the ratio of W −ℓ−ν couplings (gµ/ge). Since there is no sign of non-universality, we combine our cross section measurements in the different lepton decay modes and obtain σW ×Br(pp → W → ℓν) = 2.749 ± 0.010(stat.) ± 0.053(syst.) ± 0.165(lum.) nb and σ γ * /Z × Br(pp → γ * /Z → ℓℓ) = 254.9 ± 3.3(stat.) ± 4.6(syst.) ± 15.2(lum.) pb for dilepton pairs in the mass range between 66 GeV/c 2 and 116 GeV/c 2 . We compute the ratio R of the W → ℓν to Z → ℓℓ cross sections taking all correlations among channels into account and obtain R = 10.84 ± 0.15(stat.) ± 0.14(syst.) including a correction for the virtual photon exchange component in our measured γ * /Z → ℓℓ cross section. Based on the measured value of R, we extract values for the W leptonic branching ratio, Br(W → ℓν) = 0.1082 ± 0.0022; the total width of the W boson, Γ(W ) = 2092 ± 42 MeV; and the ratio of W and Z boson total widths, Γ(W )/Γ(Z) = 0.838 ± 0.017. In addition, we use our extracted value of Γ(W ) whose value depends on various electroweak parameters and certain CKM matrix elements to constrain the Vcs CKM matrix element, |Vcs| = 0.976± 0.030.
We report the observation of a narrow state decaying into J/psipi+pi- and produced in 220 pb(-1) of p p-bar collisions at =1.96 Tesqaure root of sV in the CDF II experiment. We observe 730+/-90 decays. The mass is measured to be 3871.3+/-0.7(stat)+/-0.4(syst) MeV/c2, with an observed width consistent with the detector resolution. This is in agreement with the recent observation by the Belle Collaboration of the X(3872) meson.
We present a new measurement of the inclusive and differential production cross sections of J= mesons and b hadrons in proton-antiproton collisions at s p 1960 GeV. The data correspond to an integrated luminosity of 39:7 pb ÿ1 collected by the CDF run II detector. We find the integrated cross section for inclusive J= production for all transverse momenta from 0 to 20 GeV=c in the rapidity range jyj < 0:6 to be 4:08 0:02stat 0:36 ÿ0:33 syst b. We separate the fraction of J= events from the decay of the long-lived b hadrons using the lifetime distribution in all events with p T J= > 1:25 GeV=c. We find the total cross section for b hadrons, including both hadrons and antihadrons, decaying to J= with transverse momenta greater than 1:25 GeV=c in the rapidity range jyJ= j < 0:6 is 0:330 0:005stat 0:036 ÿ0:033 syst b. Using a Monte Carlo simulation of the decay kinematics of b hadrons to all final states containing a J= , we extract the first measurement of the total single b-hadron cross section down to zero transverse momentum at s p 1960 GeV. We find the total single b-hadron cross section integrated over all transverse momenta for b hadrons in the rapidity range jyj < 0:6 to be 17:6 0:4stat 2:5 ÿ2:3 syst b.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.