Background Zika virus (ZIKV) is an emergent flavivirus initially considered a benign and self-limited exanthematic illness. In 2015, a new epidemic emerged in northeastern of Brazil with increased incidence of a previously rare clinical outcome, microcephaly, in newborns from mothers who were infected during pregnancy. Little is known about the immunopathogenesis of ZIKV-associated microcephaly. Understanding the inflammatory profile and degree of inflammation of persons affected with such condition is an important step towards development of innovative therapeutic strategies. Methods A case-control study compared plasma levels of several inflammatory biomarkers from newborns with ZIKV microcephaly, asymptomatic ZKV infection, or uninfected controls. Plasma biomarkers were assessed using Luminex. A series of multidimensional analysis was performed to characterize the systemic immune activation profile of the clinical groups. Results We identified an inflammatory signature associated with ZIKV microcephaly that suggested an increased inflammation. Network analysis suggested that ZIKV microcephaly is associated with imbalanced immune activation and inflammation. The cephalic perimeter was inversely proportional with the degree of inflammatory perturbation. Furthermore, a combination of plasma inflammatory biomarkers could discriminate ZIKV with microcephaly from those with ZIKV without microcephaly or uninfected neonates. Conclusions An intense inflammatory imbalance that is proportional to the disease severity hallmarks ZIKV microcephaly.
The genetic manipulation of mosquito vectors is an alternative strategy in the fight against malaria. It was previously shown that bee venom phospholipase A2 (PLA2) inhibits ookinete invasion of the mosquito midgut although mosquito fitness was reduced. To maintain the PLA2 blocking ability without compromising mosquito biology, we mutated the protein-coding sequence to inactivate the enzyme while maintaining the protein's structure. DNA encoding the mutated PLA2 (mPLA2) was placed downstream of a mosquito midgut-specific promoter (Anopheles gambiae peritrophin protein 1 promoter, AgPer1) and this construct used to transform Aedes fluviatilis mosquitoes. Four different transgenic lines were obtained and characterized and all lines significantly inhibited Plasmodium gallinaceum oocyst development (up to 68% fewer oocysts). No fitness cost was observed when this mosquito species expressed the mPLA2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.