We demonstrate phase and frequency stabilization of a diode laser at the thermal noise limit of a passive optical cavity. The system is compact and exploits a cavity design that reduces vibration sensitivity. The sub-Hz laser is characterized by comparison to a second independent system with similar fractional frequency stability (1 x 10 -15 at 1 s). The laser is further characterized by resolving a 2 Hz wide, ultranarrow optical clock transition in ultracold strontium.
International audienceWe present a detailed experimental and theoretical study of the effect of nuclear spin on the performance of optical lattice clocks. With a state-mixing theory including spin-orbit and hyperfine interactions, we describe the origin of the S01−P03 clock transition and the differential g factor between the two clock states for alkaline-earth-metal(-like) atoms, using Sr87 as an example. Clock frequency shifts due to magnetic and optical fields are discussed with an emphasis on those relating to nuclear structure. An experimental determination of the differential g factor in Sr87 is performed and is in good agreement with theory. The magnitude of the tensor light shift on the clock states is also explored experimentally. State specific measurements with controlled nuclear spin polarization are discussed as a method to reduce the nuclear spin-related systematic effects to below 10−17 in lattice clocks
We propose a combination of electromagnetically induced transparency-Raman and pulsed spectroscopy techniques to accurately cancel frequency shifts arising from electromagnetically induced transparency fields in forbidden optical clock transitions of alkaline earth atoms. At appropriate detunings, time-separated laser pulses are designed to trap atoms in coherent superpositions while eliminating off-resonance ac Stark contributions, achieving efficient population transfer up to 60% with inaccuracy <10(-17). Results from the wave-function formalism are confirmed by the density matrix approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.