The endothermic proton transfer reaction, H2+(upsilon+)+He-->HeH+ + H(DeltaE=0.806 eV), is investigated over a broad range of reactant vibrational levels using high-resolution vacuum ultraviolet to prepare reactant ions either through excitation of autoionization resonances, or using the pulsed-field ionization-photoelectron-secondary ion coincidence (PFI-PESICO) approach. In the former case, the translational energy dependence of the integral reaction cross sections are measured for upsilon+=0-3 with high signal-to-noise using the guided-ion beam technique. PFI-PESICO cross sections are reported for upsilon+=1-15 and upsilon+=0-12 at center-of-mass collision energies of 0.6 and 3.1 eV, respectively. All ion reactant states selected by the PFI-PESICO scheme are in the N+=1 rotational level. The experimental cross sections are complemented with quasiclassical trajectory (QCT) calculations performed on the ab initio potential energy surface provided by Palmieri et al. [Mol. Phys. 98, 1839 (2000)]. The QCT cross sections are significantly lower than the experimental results near threshold, consistent with important contributions due to resonances observed in quantum scattering studies. At total energies above 2 eV, the QCT calculations are in excellent agreement with the present results. PFI-PESICO time-of-flight (TOF) measurements are also reported for upsilon+=3 and 4 at a collision energy of 0.6 eV. The velocity inverted TOF spectra are consistent with the prevalence of a spectator-stripping mechanism.
We have investigated the phonon, elastic and thermodynamic properties of L1 2 phase Al 3 Ta by density functional theory approach combining with quasi-harmonic approximation model. The results of phonon band structure shows that L1 2 phase Al 3 Ta possesses dynamical stability in the pressure range from 0 to 80 GPa due to the absence of imaginary frequencies. The pressure dependences of the elastic constants C i j , bulk modulus B, shear modulus G, Young's modulus Y , B/G and Poisson's ratio ν have been analysed. The elastic constants are satisfied with mechanical stability criteria up to the external pressure of 80 GPa. The results of the elastic properties studies show that Al 3 Ta compound possesses a higher hardness, improved ductility and plasticity under higher pressures. Further, we systematically investigate the thermodynamic properties, such as the Debye temperature Θ, heat capacity C p , and thermal expansion coefficient α, and provide the relationships between thermal parameters and pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.