This paper reports on a novel method for quantifying the cortical activity of a patient during general anesthesia as a surrogate measure of the patient's level of consciousness. The proposed technique is based on the analysis of a single-channel (frontal) electroencephalogram (EEG) signal using stationary wavelet transform (SWT). The wavelet coefficients calculated from the EEG are pooled into a statistical representation, which is then compared to two well-defined states: the awake state with normal EEG activity, and the isoelectric state with maximal cortical depression. The resulting index, referred to as the wavelet-based anesthetic value for central nervous system monitoring (WAV(CNS)), quantifies the depth of consciousness between these two extremes. To validate the proposed technique, we present a clinical study which explores the advantages of the WAV(CNS) in comparison with the BIS monitor (Aspect Medical Systems, MA), currently a reference in consciousness monitoring. Results show that the WAV(CNS) and BIS are well correlated (r = 0.969) during periods of steady-state despite fundamental algorithmic differences. However, in terms of dynamic behavior, the WAV(CNS) offers faster tracking of transitory changes at induction and emergence, with an average lead of 15-30 s. Furthermore, and conversely to the BIS, the WAV(CNS) regains its preinduction baseline value when patients are responding to verbal command after emergence from anesthesia. We conclude that the proposed analysis technique is an attractive alternative to BIS monitoring. In addition, we show that the WAV(CNS) dynamics can be modeled as a linear time invariant transfer function. This index is, therefore, well suited for use as a feedback sensor in advisory systems, closed-loop control schemes, and for the identification of the pharmacodynamic models of anesthetic drugs.
While both BIS and M-Entropy monitors have been successfully used in closed-loop systems, we were unable to obtain a unique LTI model that could capture their dynamic behavior during step-wise changes in cortical activity. The uncertainty in their output during rapid changes in cortical activity impose limitations in the ability of the controller to compensate for rapid changes in patients' cortical state, and pose additional difficulties in being able to provide mathematically proof for the stability of the overall closed-loop system. Conversely, the NeuroSENSE dynamic behavior can be fully captured by a linear and time invariant transfer function, which makes it better suited for closed-loop applications.
-This paper investigates the use of wavelet decomposition of the electroencephalogram (EEG) to assess the hypnotic state of anesthetized patients undergoing surgery. A single case study and a comparison with an existing monitor of hypnosis are presented. The proposed technique can differentiate clearly between the anesthetized state and the awake "baseline" state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.