The human consumption of food animal products is the main topic of an important debate among professionals in this sector: dietologists, dietitians and nutritional biologists. The red meat provides all the essential amino acids, bioavailable iron, zinc, calcium, lipids and B-group vitamins. A valid alternative to beef could be the buffalo meat. Italy is the largest European producer of buffalo meat and derivatives. The high nutritional characteristics of buffalo meat make it suitable to be included in the Mediterranean diet to customize it in relation to the needs and conditions of the population. Polyunsaturated/saturated fatty acids ratio can be influenced by diet, breed and type of breeding, but muscle tissue fat percentage is the main factor in determining a favorable fatty acid composition. This review focuses on the biochemical and nutritional characteristics of the buffalo meat (content of fats, cholesterol, amino acids, vitamins and minerals), explaining their variability depending on the different breeds, and the favorable implications on the human health. These results suggest that buffalo meat can be a healthier alternative to beef, not only for healthy people in particular physiological conditions (i.e. pregnancy), but also for persons at risk for cardiovascular and cerebrovascular diseases, thus achieving the goal of a personalized nutrition.
Staphylococcus aureus is an important human and animal pathogen, and is regarded as an important cause of intramammary infection (IMI) in ruminants. Staphylococcus aureus genetic variability and virulence factors have been well studied in veterinary medicine, especially in cows as support for control and management of IMI. The aim of the present study was to genotype 71 Staph. aureus isolates from the bulk tank and foremilk of water buffaloes (n=40) and from udder tissue (n=7) and foremilk (n=24) from small ruminants. The method used was previously applied to bovine Staph. aureus and is based on the amplification of the 16S-23S rRNA intergenic spacer region. The technique applied was able to identify different Staph. aureus genotypes isolated from dairy species other than the bovine species, and cluster the genotypes according to species and herds. Virulence gene distribution was consistent with genotype differentiation. The isolates were also characterized through determination of the presence of 19 virulence-associated genes by specific PCR. Enterotoxins A, C, D, G, I, J, and L were associated with Staph. aureus isolates from buffaloes, whereas enterotoxins C and L were linked to small ruminants. Genes coding for methicillin resistance, Panton-Valentine leukocidin, exfoliative toxins A and B, and enterotoxins B, E, and H were undetected. These findings indicate that RNA template-specific PCR is a valid technique for typing Staph. aureus from buffaloes and small ruminants and is a useful tool for understanding udder infection epidemiology.
Listeria monocytogenes (L. monocytogenes) is a widespread opportunistic pathogen that causes the listeriosis foodborne disease. This bacterium has become a common contaminant of handled food, and a relevant public health issue. Here we describe a nosocomial outbreak of listeriosis caused by an ST451 strain of L. monocytogenes involving three cancer and one immunocompromised patients hospitalized in different units from the same hospital during September and October 2020. The epidemiological investigation was conducted using traditional microbiological methodology combined with a whole genome sequencing approach. The source of contamination was identified in the kitchen hospital, where a meat slicer used to prepare patients’ meals was tested positive to the same sequence type (ST) of L. monocytogenes. This is the first report of an outbreak of listeriosis caused by ST451 in Italy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.