Type 2 diabetes is one of the major chronic diseases accounting for a substantial proportion of disease burden in Western countries. The majority of the burden of type 2 diabetes is attributed to environmental risks and modifiable risk factors such as lifestyle. The environment we live in, and changes to it, can thus contribute substantially to the prevention of type 2 diabetes at a population level. The 'exposome' represents the (measurable) totality of environmental, i.e. nongenetic, drivers of health and disease. The external exposome comprises aspects of the built environment, the social environment, the physico-chemical environment and the lifestyle/food environment. The internal exposome comprises measurements at the epigenetic, transcript, proteome, microbiome or metabolome level to study either the exposures directly, the imprints these exposures leave in the biological system, the potential of the body to combat environmental insults and/or the biology itself. In this review, we describe the evidence for environmental risk factors of type 2 diabetes, focusing on both the general external exposome and imprints of this on the internal exposome. Studies provided established associations of air pollution, residential noise and area-level socioeconomic deprivation with an increased risk of type 2 diabetes, while neighbourhood walkability and green space are consistently associated with a reduced risk of type 2 diabetes. There is little or inconsistent evidence on the contribution of the food environment, other aspects of the social environment and outdoor temperature. These environmental factors are thought to affect type 2 diabetes risk mainly through mechanisms incorporating lifestyle factors such as physical activity or diet, the microbiome, inflammation or chronic stress. To further assess causality of these associations, future studies should focus on investigating the longitudinal effects of our environment (and changes to it) in relation to type 2 diabetes risk and whether these associations are explained by these proposed mechanisms.
With ever more people living in cities worldwide, it becomes increasingly important to understand and improve the impact of the urban habitat on livability, health behaviors and health outcomes. However, implementing interventions that tackle the exposome in complex urban systems can be costly and have long-term, sometimes unforeseen, impacts. Hence, it is crucial to assess the health impact, cost-effectiveness, and social distributional impacts of possible urban exposome interventions before implementing them. Spatial agent-based modeling can capture complex behavior-environment interactions, exposure dynamics, and social outcomes in a spatial context. This paper discusses model architectures and methodological challenges for successfully modeling urban exposome interventions using spatial agent-based modeling. We review the potential and limitations of the method; model components required to capture active and passive exposure and intervention effects; human-environment interactions and their integration into the macro-level health impact assessment and social costs benefit analysis; strategies for model calibration. Major challenges for a successful application of agent-based modeling to urban exposome intervention assessment are (1) the design of realistic behavioral models that can capture different types of exposure and that respond to urban interventions, (2) the mismatch between the possible granularity of exposure estimates and the evidence for corresponding exposure-response functions, (3) the scalability issues that emerge when aiming to estimate long-term effects such as health and social impacts based on high-resolution models of human-environment interactions, (4) as well as the data- and computational complexity of calibrating the resulting agent-based model. Although challenges exist, strategies are proposed to improve the implementation of ABM in exposome research.
Why do some neighborhoods thrive, and others do not? While the importance of the local amenity mix has been established as a key determinant of local livability, its link to urban transport infrastructure remains understudied, partially due to a lack of data. Using spatiotemporal social media data from Foursquare, we analyze the impact of metro stations which opened between 2014 and 2017 on the amenity mix of surrounding neighborhoods in nine European cities: Rome, Milan, Barcelona, Budapest, Warsaw, Sofia, Vienna, Helsinki, and Stuttgart. Thereby, we study three properties of the local amenity mix: its density, multifunctionality, and the heterogeneity between amenity types. For this purpose, we propose a new measurement of multifunctionality, which calculates the entropy of the locally present amenity set incorporating the degree of similarity between amenity types. For causal inference, we use Difference-in-Difference Regression based on Propensity Score Matching and Entropy Balancing. Our findings show that in most cities, subway expansion had a significant positive impact on the local amenity density and multifunctionality and that especially the social amenities—Arts & Entertainment, Restaurants and Nightlife—responded strongly. Moreover, considerable agglomeration forces seem to prevail, causing existing subcenters to benefit most from new metro stations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.