This paper shows how the performance of evolutionary multiobjective optimization (EMO) algorithms can be improved by hybridization with local search. The main positive effect of the hybridization is the improvement in the convergence speed to the Pareto front. On the other hand, the main negative effect is the increase in the computation time per generation. Thus, the number of generations is decreased when the available computation time is limited. As a result, the global search ability of EMO algorithms is not fully utilized. These positive and negative effects are examined by computational experiments on multiobjective permutation flowshop scheduling problems. Results of our computational experiments clearly show the importance of striking a balance between genetic search and local search. In this paper, we first modify our former multiobjective genetic local search (MOGLS) algorithm by choosing only good individuals as initial solutions for local search and assigning an appropriate local search direction to each initial solution. Next, we demonstrate the importance of striking a balance between genetic search and local search through computational experiments. Then we compare the modified MOGLS with recently developed EMO algorithms: strength Pareto evolutionary algorithm and revised nondominated sorting genetic algorithm. Finally, we demonstrate that local search can be easily combined with those EMO algorithms for designing multiobjective memetic algorithms. Index Terms-Evolutionary multiobjective optimization, genetic local search, memetic algorithms, multiobjective optimization, permutation flowshop scheduling.
Abstract-We examine the performance of a fuzzy geneticsbased machine learning method for multidimensional pattern classification problems with continuous attributes. In our method, each fuzzy if-then rule is handled as an individual, and a fitness value is assigned to each rule. Thus, our method can be viewed as a classifier system. In this paper, we first describe fuzzy if-then rules and fuzzy reasoning for pattern classification problems. Then we explain a genetics-based machine learning method that automatically generates fuzzy if-then rules for pattern classification problems from numerical data. Because our method uses linguistic values with fixed membership functions as antecedent fuzzy sets, a linguistic interpretation of each fuzzy if-then rule is easily obtained. The fixed membership functions also lead to a simple implementation of our method as a computer program. The simplicity of implementation and the linguistic interpretation of the generated fuzzy if-then rules are the main characteristic features of our method. The performance of our method is evaluated by computer simulations on some well-known test problems. While our method involves no tuning mechanism of membership functions, it works very well in comparison with other classification methods such as nonfuzzy machine learning techniques and neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.