The formation behavior of grown-in defects in Czochralski silicon (CZ-Si) crystals was investigated using two crystals that were quenched during growth but in one case after crystal growth had been halted for 5 h. The distributions of grown-in defect density and size, and their micro-structures were analyzed as a function of temperature during crystal growth just before quenching by means of an optical precipitate profiler (OPP) and an atomic force microscope (AFM) coupled with a laser particle counter. The formation of grown-in defects, which are considered to be octahedral voids, was found to consist of two dominant processes. The first step involves rapid void growth in a narrow temperature range of about 30° C below 1100° C and the subsequent step consists of an oxide film growth on the inner surface of the void during the cooling process to about 900° C after void formation. It was also found that the growth of the oxide film in the voids is rate-limited by the diffusion rate of oxygen atoms in silicon. In addition, it is strongly suggested that void formation in such a narrow temperature range is due to a rapid agglomeration of vacancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.