Plant steroid hormones, known as brassinosteroids (BRs), signal through a plasma membrane localized receptor kinase BRI1. We identified bes1, a semidominant suppressor of bri1, which exhibits constitutive BR response phenotypes including long and bending petioles, curly leaves, accelerated senescence, and constitutive expression of BR-response genes. BES1 accumulates in the nucleus in response to BRs. BES1 is phosphorylated and appears to be destabilized by the glycogen synthase kinase-3 (GSK-3) BIN2, a negative regulator of the BR pathway. These results establish a signaling cascade for BRs with similarities to the Wnt pathway, in which signaling through cell surface receptors leads to inactivation of a GSK-3 allowing accumulation of a nuclear protein that regulates target gene expression.
Plant steroid hormones, brassinosteroids (BRs), are perceived by a cell surface receptor kinase, BRI1, but how BR binding leads to regulation of gene expression in the nucleus is unknown. Here we describe the identification of BZR1 as a nuclear component of the BR signal transduction pathway. A dominant mutation bzr1-1D suppresses BR-deficient and BR-insensitive (bri1) phenotypes and enhances feedback inhibition of BR biosynthesis. BZR1 protein accumulates in the nucleus of elongating cells of dark-grown hypocotyls and is stabilized by BR signaling and the bzr1-1D mutation. Our results demonstrate that BZR1 is a positive regulator of the BR signaling pathway that mediates both downstream BR responses and feedback regulation of BR biosynthesis.
The hormonal action of abscisic acid (ABA) in plants is controlled by the precise balance between its biosynthesis and catabolism. In plants, ABA 8 0 -hydroxylation is thought to play a predominant role in ABA catabolism. ABA 8 0 -hydroxylase was shown to be a cytochrome P450 (P450); however, its corresponding gene had not been identified. Through phylogenetic and DNA microarray analyses during seed imbibition, the candidate genes for this enzyme were narrowed down from 272 Arabidopsis P450 genes. These candidate genes were functionally expressed in yeast to reveal that members of the CYP707A family, CYP707A1-CYP707A4, encode ABA 8 0 -hydroxylases. Expression analyses revealed that CYP707A2 is responsible for the rapid decrease in ABA level during seed imbibition. During drought stress conditions, all CYP707A genes were upregulated, and upon rehydration a significant increase in mRNA level was observed. Consistent with the expression analyses, cyp707a2 mutants exhibited hyperdormancy in seeds and accumulated six-fold greater ABA content than wild type. These results demonstrate that CYP707A family genes play a major regulatory role in controlling the level of ABA in plants.
Brassinosteroids (BRs) signal through a plasma membrane-localized receptor kinase to regulate plant growth and development. We showed previously that a novel protein, BES1, accumulates in the nucleus in response to BRs, where it plays a role in BR-regulated gene expression; however, the mechanism by which BES1 regulates gene expression is unknown. In this study, we dissect BES1 subdomains and establish that BES1 is a transcription factor that binds to and activates BR target gene promoters both in vitro and in vivo. BES1 interacts with a basic helix-loop-helix protein, BIM1, to synergistically bind to E box (CANNTG) sequences present in many BR-induced promoters. Loss-of-function and gain-of-function mutants of BIM1 and its close family members display BR response phenotypes. Thus, BES1 defines a new class of plant-specific transcription factors that cooperate with transcription factors such as BIM1 to regulate BR-induced genes.
Strigolactones (SLs) are a new class of carotenoid-derived phytohormones essential for developmental processes shaping plant architecture and interactions with parasitic weeds and symbiotic arbuscular mycorrhizal fungi. Despite the rapid progress in elucidating the SL biosynthetic pathway, the perception and signaling mechanisms of SL remain poorly understood. Here we show that DWARF53 (D53) acts as a repressor of SL signaling and SLs induce its degradation. We found that the rice d53 mutant, which produces an exaggerated number of tillers compared to wild type plants, is caused by a gain-of-function mutation and is insensitive to exogenous SL treatment. The D53 gene product shares predicted features with the class I Clp ATPase proteins and can form a complex with the α/β hydrolase protein DWARF14 (D14) and the F-box protein DWARF3 (D3), two previously identified signaling components potentially responsible for SL perception. We demonstrate that, in a D14- and D3-dependent manner, SLs induce D53 degradation by the proteasome and abrogate its activity in promoting axillary bud outgrowth. Our combined genetic and biochemical data reveal that D53 acts as a repressor of the SL signaling pathway, whose hormone-induced degradation represents a key molecular link between SL perception and responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.