A rapid (< 2.5 hrs) method for single-strand conformation polymorphism (SSCP) analysis of PCR products that allows the use of ethidium bromide staining is described. PCR products ranging in size from 117 to 256 bp were evaluated for point mutations and polymorphisms by 'cold SSCP' in commercially available pre-cast polyacrylamide mini-gels. Several electrophoretic parameters (running temperature, buffers, denaturants, DNA concentration, and gel polyacrylamide concentration) were found to influence the degree of strand separation and appeared to be PCR fragment specific. Use of the 'cold' SSCP technique and the mini-gel format allowed us to readily optimize the electrophoretic conditions for each PCR fragment. This greatly increased our ability to detect polymorphisms compared to conventional, radioisotope-labeled 'hot' SSCP, typically run under two standard temperature conditions. Excellent results have been obtained in resolving mutant PCR fragments from human p53 exons 5 through 8, human HLA-DQA, human K-ras exons 1 and 2, and rat K-ras exon 3. Polymorphisms could be detected when mutant DNA comprised as little as 3% of the total gene copies in a PCR mixture. Compared to standard 'hot' SSCP, this novel non-isotopic method has additional advantages of dramatically increased speed, precise temperature control, reproducibility, and easily and inexpensively obtainable reagents and equipment. This new method also lacks the safety and hazardous waste management concerns associated with radioactive methods.
Nasal NK/T-cell lymphoma (NKTCL) is an uncommon disease, but usually shows a highly aggressive clinical course. The disease is much more frequent in Asian and Latin American countries than in Western countries, and is universally associated with Epstein–Barr virus (EBV) infection. Analyses of gene mutations, especially p53 and c-KIT, revealed the different frequencies by district. Epidemiological studies revealed the changes of the disease frequency in Korea during the period from 1977–1989 to 1990–1996. Case-control study showed that the exposure to pesticides and chemical solvents could be causative of NKTCL. Further studies including HLA antigen typing of patients is necessary to further clarify the disease mechanism.
We aimed to reveal the prevalence and pattern of human papillomavirus (HPV) infection and p53 mutations among Japanese head and neck squamous cell carcinoma (HNSCC) patients in relation to clinicopathological parameters. Human papillomavirus DNA and p53 mutations were examined in 493 HNSCCs and its subset of 283 HNSCCs. Oropharyngeal carcinoma was more frequently HPV-positive than non-oropharyngeal carcinoma (34.4% vs 3.6%, P < 0.001), and HPV16 accounted for 91.1% of HPV-positive tumors. In oropharyngeal carcinoma, which showed an increasing trend of HPV prevalence over time (P < 0.001), HPV infection was inversely correlated with tobacco smoking, alcohol drinking, p53 mutations, and a disruptive mutation (P = 0.003, <0.001, <0.001, and <0.001, respectively). The prevalence of p53 mutations differed significantly between virus-unrelated HNSCC and virus-related HNSCC consisting of nasopharyngeal and HPV-positive oropharyngeal carcinomas (48.3% vs 7.1%, P < 0.001). Although p53 mutations were associated with tobacco smoking and alcohol drinking, this association disappeared in virus-unrelated HNSCC. A disruptive mutation was never found in virus-related HNSCC, whereas it was independently associated with primary site, such as the oropharynx and hypopharynx (P = 0.01 and 0.03, respectively), in virus-unrelated HNSCC. Moreover, in virus-unrelated HNSCC, G:C to T:A transversions were more frequent in ever-smokers than in never-smokers (P = 0.04), whereas G:C to A:T transitions at CpG sites were less frequent in ever-smokers than in never-smokers (P = 0.04). In conclusion, HNSCC is etiologically classified into virus-related and virus-unrelated subgroups. In virus-related HNSCC, p53 mutations are uncommon with the absence of a disruptive mutation, whereas in virus-unrelated HNSCC, p53 mutations are common, and disruptive mutagenesis of p53 is related with oropharyngeal and hypopharyngeal carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.