Broadband on-chip optical frequency combs (OFCs) are important for expanding the functionality of photonic integrated circuits. Here, we demonstrate a huge local optical nonlinearity enhancement using graphene. A waveguide is decorated with graphene by precisely manipulating graphene’s area and position. Our approach simultaneously achieves both an extremely efficient supercontinuum and ultra-short pulse generation. With our graphene-decorated silicon waveguide (G-SWG), we have achieved enhanced spectral broadening of femtosecond pump pulses, along with an eightfold increase in the output optical intensity at a wavelength approximately 200 nm shorter than that of the pump pulses. We also found that this huge nonlinearity works as a compressor that effectively compresses pulse width from 80 to 15.7 fs. Our results clearly show the potential for our G-SWG to greatly boost the speed and capacity of future communications with lower power consumption, and our method will further decrease the required pump laser power because it can be applied to decorate various kinds of waveguides with various two-dimensional materials.
To obtain information on the effects of nongenotoxic carcinogens at low doses for human cancer risk assessment, the carcinogenic potential of the organochlorine insecticide, 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), in the liver was assessed in F344 rats. In experiment 1, 240 male animals, 21 days old, were administered 0, 0.5, 1.0, 2.0, 5.0, 20, 100 and 500 ppm DDT in the diet for 16 weeks. Experiment 2 was conducted to elucidate the carcinogenic potential of DDT at lower levels using 180 rats given doses of 0, 0.005, 0.01, 0.1, 0.2 and 0.5 ppm. The livers of all animals were immunohistochemically examined for expression of glutathione S-transferase placental form (GST-P), putative preneoplastic lesions. Quantitative values for GST-P-positive foci in the liver were increased dose-dependently in rats given 20 ppm DDT and above with statistical significance as compared with the concurrent control value. In contrast, doses of 0.005 and 0.01 ppm were associated with a tendency for decrease below the control value, although not significantly. Western blotting analysis show that cytochrome P-450 3A2 (CYP3A2) protein expression tended to decrease at 0.005 and 0.01 ppm, a good correlation being observed with the change in the number of GST-P-positive foci. These findings suggest that a DDT hepatocarcinogenicity may show nonlinear response, that is, hormetic response at low doses. Furthermore, since CYP3A2 protein expression appears to be important for the effects of phenobarbital and the ␣-isomer of benzene hexachloride, mRNAs for IL-1 receptor type 1 (IL-1R1) and TNF-␣ receptor type 1 (TNFR1) whose ligands have roles not only in downregulating CYP3A2 expression but also in inducing antiproliferative effect or apoptosis in hepatocyte were examined. Increase was observed at low doses of DDT. Oxidative stress in liver DNA, assessed in terms of 8-hydroxydeoxyguanosine as a marker, was also decreased. These findings suggest that the possible hormetic effect that was observed in our detailed low-dose study of DDT carcinogenesis, although not statistically significant, may be linked to levels of oxidative stress and proinflammatory cytokines.
We investigated phase-noise characteristics of both a phase/intensity-modulated laser with 25-GHz mode spacing and a mode-locked fiber laser with carrier-envelope-offset (CEO) locking. As the separation from the frequency of the continuous wave (CW) laser diode (LD) for a seed light source increases, the integrated phase noise of each comb mode of both the phase/intensity-modulated laser and supercontinuum light originating from it increases with the same slope as a function of mode number. The dependence of the integrated phase noise on mode number with the phase/intensity-modulated laser is much larger than with the mode-locked fiber laser of the CEO locking. However, the phase noise of the phase/intensity-modulated laser is extremely lower than that of the mode-locked fiber laser with CEO locking in the frequency region around the CW LD. The phase noise of the phase/intensity-modulated laser with 25-GHz mode spacing and that of the mode-locked fiber laser with the CEO locking could be estimated and were found to be almost the same at the wavelengths required in an f-to-2f self-referencing interferometer. Our experimental results indicate the possibility of achieving an offset-frequency-locked frequency comb with the phase/intensity-modulated laser.
A solid-state-laser based single-frequency 589 nm light source that can be easily used in the laboratory is needed for sodium spectroscopy studies and cold sodium atom experiments. This paper shows that by using a periodically poled Zn-doped LiNbO(3) ridge waveguide for sum-frequency generation, we can obtain a high conversion efficiency to 589 nm light from two sub-watt 1064 and 1319 nm Nd:YAG lasers via a simple single pass wavelength conversion process without employing an enhancement cavity. A 494 mW light at 589 nm is generated and achieves overall conversion efficiency from the laser power of 41%. Excellent long-term stability of output power is obtained and its standard deviation is characterized to be 0.09%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.