The Wilms' tumor gene WT1 is overexpressed in leukemias and various types of solid tumors, and the WT1 protein was demonstrated to be an attractive target antigen for immunotherapy against these malignancies. Here, we report the outcome of a phase I clinical study of WT1 peptide-based immunotherapy for patients with breast or lung cancer, myelodysplastic syndrome, or acute myeloid leukemia. The WT1 gene was isolated as a gene responsible for Wilms' tumor, a pediatric renal cancer, and encodes a zinc finger transcription factor, which is involved in cell proliferation and differentiation, apoptosis, and organ development (3-6). Although the WT1 gene was first categorized as a tumor suppressor gene, we have proposed that the wild-type WT1 gene functions as an oncogene rather than a tumor-suppressor gene on the basis of the following findings. The first is high expression of the wild-type WT1 gene in both leukemias and solid tumors (7-18), the second is growth inhibition of leukemic and solid tumor cells by treatment with WT1 antisense oligomers (14,19), and the third is block of differentiation, but induction of proliferation, of wild-type WT1 gene-transfected myeloid progenitor cells in response to granulocyte colony-stimulating factor (20, 21). The last two are block of thymocyte differentiation but induction of thymocyte proliferation in the transgenic mice with the lck promoter-driven WT1 gene (22), and WT1 gene expression in the majority of dimethylbenzanthracene-induced erythroblastic leukemia and a stronger tendency of the cells with high levels of WT1 to develop into leukemias (23).Expression of the wild-type WT1 gene has been found in most cases of acute myelocytic leukemia (AML), acute lymphocytic leukemia, chronic myelocytic leukemia, and myelodysplastic syndrome (MDS) at higher levels than those in normal bone marrow (BM) or peripheral blood (7-13). Furthermore, various types of solid tumors, including lung, breast, thyroid, and colorectal cancers, expressed the wild-type WT1 gene at higher levels compared to those in corresponding normal tissues (15-18). These results indicated that the wild-type WT1 gene product may be a promising target for cancer immunotherapy (24,25).We tested the potential of the WT1 gene product to serve as a target antigen for tumor-specific immunotherapy. Human WT1-specific CTLs have been found to induce lysis of endogenously WT1-expressing tumor cells in vitro, but not to cause damage to physiologically WT1-expressing normal cells (24,(26)(27)(28). We used a mouse in vivo system to demonstrate that immunization of mice with either MHC class I-restricted WT1 peptide or WT1 cDNA induced WT1-specific CTLs. We also showed that the immunized mice rejected challenges of WT1-expressing tumor cells, whereas the induced CTLs did not affect normal healthy tissues that physiologically expressed WT1 nor damaged the normal tissues (25, 29). These results indicated that the WT1 protein could be a novel tumor rejection antigen for cancer immunotherapy (24)(25)(26)(27)(28)(29)(30)(31)(32).In...
Tetraspanins CD9 and CD81 facilitate the fusion between gametes, myoblasts, or virus-infected cells. Here, we investigated the role of these tetraspanins in the fusion of mononuclear phagocytes. Expression of CD9 and CD81 and their complex formation with integrins were up-regulated when blood monocytes were cultured under normal conditions. Under fusogenic conditions in the presence of Con A, CD9 and CD81 up-regulation was inhibited, and their complex formation with integrins was down-regulated. Anti-CD9 and -CD81 antibodies, which were previously shown to inhibit the fusion of gametes, myoblasts, and virus-infected cells, unexpectedly promoted the fusion of monocytes and alveolar macrophages. However, these effects were not due to altered cell adhesion, aggregation, or cytokine production. When stimulated in vitro or in vivo, alveolar macrophages and bone marrow cells of CD9- and CD81-null mice formed larger numbers of multinucleated cells than those of wild-type mice. Finally, CD9/CD81 double-null mice spontaneously developed multinucleated giant cells in the lung and showed enhanced osteoclastogenesis in the bone. These results suggest that CD9 and CD81 coordinately prevent the fusion of mononuclear phagocytes.
Interleukin (IL)-10 has been shown to reduce many inflammatory reactions. We investigated the in vivo effects of IL-10 on a bleomycin-induced lung injury model. Hemagglutinating virus of Japan (HVJ)-liposomes containing a human IL-10 expression vector (hIL10-HVJ) or a balanced salt solution as a control (Cont-HVJ) was intraperitoneally injected into mice on day -3. This was followed by intratracheal instillation of bleomycin (0.8 mg/kg) on day 0. Myeloperoxidase activity of bronchoalveolar lavage fluid and tumor necrosis factor-alpha mRNA expression in bronchoalveolar lavage fluid cells on day 7 and hydroxyproline content of the whole lung on day 21 were inhibited significantly by hIL10-HVJ treatment. However, Cont-HVJ treatment could not suppress any of these parameters. We also examined the in vitro effects of IL-10 on the human lung fibroblast cell line WI-38. IL-10 significantly reduced constitutive and transforming growth factor-beta-stimulated type I collagen mRNA expression. However, IL-10 did not affect the proliferation of WI-38 cells induced by platelet-derived growth factor. These data suggested that exogenous IL-10 may be useful in the treatment of pulmonary fibrosis.
Small cell lung cancer (SCLC) invades locally and metastasizes distantly extremely early when compared with nonsmall cell lung cancer (NSCLC). The underlying molecular mechanisms, however, have not been elucidated. Accumulating evidence suggests that downregulation of several members of tetraspanins is associated with progression of solid tumors, thus indicating poor prognosis. Here we screened 30 lung cancer cell lines for expression of tetraspanins, CD9, CD63, CD81, CD82, CD151, and NAG-2. Flow cytometry revealed that, among these proteins, CD9 is broadly expressed in NSCLC lines, but is absent or highly reduced in most SCLC lines (Po0.0001). Using the Boyden chamber and videomicroscopic cell motility assays, we showed that stable transfection of CD9 into an SCLC line, OS3-R5, reduced cell motility on fibronectin. Furthermore, by transient transfection of green fluorescent protein (GFP)-tagged CD9 into three other SCLC lines, we observed that SCLC cells expressing GFP-CD9 were uniformly less motile than untransfected cells. CD9 or GFP-CD9 was associated with b1 integrins and distributed at the tumor cell periphery and cell-cell contacts, suggesting that CD9 modifies b1 integrin function to reduce motility. These findings suggest that low expression of CD9 may contribute to the highly invasive and metastatic phenotype of SCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.