ABSTRACT. Mechanical stretch affects the healing and remodeling process of the anterior cruciate ligament (ACL) after surgery in important ways. In this study, the effects of mechanical stress on gene expression of type I and III collagen by cultured human ACL cells and roles of transforming growth factor (TGF)-β1 in the regulation of mechanical strain-induced gene expression were investigated. Uniaxial cyclic stretch was applied on ACL cells at 10 cycles/min with 10% length stretch for 24 h. mRNA expression of the type I and type III collagen was increased by the cyclic stretch. TGF-β1 protein in the cell culture supernatant was also increased by the stretch. In the presence of anti-TGF-β1 antibody, stretch-induced increase in type I and type III mRNA expression was markedly ablated. The results suggest that the stretch-induced mRNA expression of the type I and type III collagen is mediated via an autocrine mechanism of TGF-β1 released from ligament cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.