Key message
The activation of the antioxidant system under stress combination is a transmissible trait from the rootstock to the scion. Therefore, rootstock selection is key to improve crop performance and a sustainable production under changing climate conditions.
Abstract
Climate change is altering weather conditions such as mean temperatures and precipitation patterns. Rising temperatures, especially in certain regions, accelerates soil water depletion and increases drought risk, which affects agriculture yield. Previously, our research demonstrated that the citrus rootstock Carrizo citrange (Citrus sinensis × Poncirus trifoliata) is more tolerant than Cleopatra mandarin (C. reshni) to drought and heat stress combination, in part, due to a higher activation of the antioxidant system that alleviated damage produced by oxidative stress. Here, by using reciprocal grafts of both genotypes, we studied the importance of the rootstock on scion performance and antioxidant response under this stress combination. Carrizo rootstock, under stress combination, positively influenced Cleopatra scion by reducing H2O2 accumulation, increasing superoxide dismutase (SOD) and ascorbate peroxidase (APX) enzymatic activities and inducing SOD1, APX2 and catalase (CAT) protein accumulations. On the contrary, Cleopatra rootstock induced decreases in APX2 expression, CAT activity and SOD1, APX2 and CAT contents on Carrizo scion. Taken together, our findings indicate that the activation of the antioxidant system under stress combination is a transmissible trait from the rootstock to the scion and highlight the importance of the rootstock selection to improve crop performance and maintain citrus yield under the current scenario of climate change.
Drought, heat and high irradiance are abiotic stresses that negatively affect plant development and reduce crop productivity. The confluence of these three factors is common in nature, causing extreme situations for plants that compromise their viability. Drought and heat stresses increase the saturation of the photosystem reaction centers, increasing sensitivity to high irradiance. In addition, these stress conditions affect photosystem II (PSII) integrity, alter redox balance of the electron transport chain and decrease the photosynthetic rate. Here, we studied the effect of the stress combinations on the photosynthetic apparatus of two citrus genotypes, Carrizo citrange (Citrus sinensis × Poncirus trifoliata) and Cleopatra mandarin (Citrus reshni). Results obtained showed that physiological responses, such as modulation of stomatal aperture and transpiration rate, aimed to reduce leaf temperature, are key to diminishing heat impact on photosynthetic apparatus and increasing tolerance to double and triple combinations of drought, high irradiance and high temperatures. By using transcriptomic and proteomic analyses, we have demonstrated that under these abiotic stress combinations, Carrizo plants were able to increase expression of genes and proteins related to the photosystem repairing machinery (which better maintained the integrity of PSII) and other components of the photosynthetic apparatus. Our findings reveal crucial physiological and genetic responses in citrus to increase tolerance to the combination of multiple abiotic stresses that could be the basis for breeding programs that ensure a sustainable citrus production.
Long-term subculture plays an essential role in the large-scale multiplication and production of somatic plantlets. We investigated the effects of long-term subculture on in vitro shoot development and ex vitro rooting associated with changes in the hormones and protein profiles in C. fissilis. The number of subcultures of shoots induced a decrease in the ex vitro rooting response. The reduction in adventitious root (AR) formation was associated with decreases in the contents of indole-3-acetic acid (IAA), abscisic acid (ABA), 12-oxo phytodienoic acid (OPDA), putrescine (Put), and spermine and increases in jasmonic acid (JA), jasmonoyl-isoleucine, trans-cinnamic acid, and salicylic acid contents in shoots at the fourth subculture compared to the first. The ornithine decarboxylase enzyme preferentially functions in the Put biosynthesis pathway and was related to the highest AR formation in shoots at the first subculture. Down-accumulation of the auxin-binding protein ABP19a in shoots from the fourth subculture compared to the first subculture was related to a decrease in both IAA contents and AR formation. In addition, down-accumulation of glucose-6-phosphate isomerase, glutamine synthetase leaf isozyme chloroplastic, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, L-ascorbate peroxidase, cytosolic, monodehydroascorbate reductase, and 2-Cys peroxiredoxin BAS1-like, chloroplastic and up-accumulation of caffeoyl-CoA O-methyltransferase 1 and isoforms of peroxidase 4 proteins in shoots from the fourth relative to the first subculture were associated with a reduction in AR formation. These results showed that the understanding of hormonal and molecular mechanisms related to the potential of AR formation in shoots under successive subcultures is relevant to improving large-scale plantlet production in C. fissilis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.