The extent of specialization/generalization continuum in fruit-frugivore interactions at the individual level remains poorly explored. Here, we investigated the interactions between the Neotropical treelet Miconia irwinii (Melastomataceae) and its avian seed dispersers in Brazilian campo rupestre. We built an individual-based network to derive plant degree of interaction specialization regarding disperser species. Then, we explored how intraspecific variation in interaction niche breadth relates to fruit availability on individual plants in varying densities of fruiting conspecific neighbors, and how these factors affect the quantity of viable seeds dispersed. We predicted broader interaction niche breadths for individuals with larger fruit crops in denser fruiting neighborhoods. The downscaled network included nine bird species and 15 plants, which varied nearly five-fold in their degree of interaction specialization. We found positive effects of crop size on visitation and fruit removal rates, but not on degree of interaction specialization. Conversely, we found that an increase in the density of conspecific fruiting neighbors both increased visitation rate and reduced plant degree of interaction specialization. We suggest that tracking fruit-rich patches by avian frugivore species is the main driver of density-dependent intraspecific variation in plants' interaction niche breadth. Our study shed some light on the overlooked fitness consequences of intraspecific variation in interaction niches by showing that individuals along the specialization/generalization continuum may have their seed dispersed with similar effectiveness. Our study exemplifies how individual-based networks linking plants to frugivore species that differ in their seed dispersal effectiveness can advance our understanding of intraspecific variation in the outcomes of fruit-frugivore interactions.
The mistletoe Psittacanthus robustus was studied as a model to link flower phenology and nectar secretion strategy to pollinator behaviour and the reproductive consequences for the plant. The bright-coloured flowers presented diurnal anthesis, opened asynchronously throughout the rainy season and produced copious dilute nectar as the main reward for pollinators. Most nectar was secreted just after flower opening, with little sugar replenishment after experimental removals. During the second day of anthesis in bagged flowers, the flowers quickly reabsorbed the offered nectar. Low values of nectar standing crop recorded in open flowers can be linked with high visitation rates by bird pollinators. Eight hummingbirds and two passerines were observed as potential pollinators. The most frequent flower visitors were the hummingbirds Eupetomena macroura and Colibri serrirostris, which actively defended flowering mistletoes. The spatial separation between anthers, stigma and nectar chamber promotes pollen deposition on flapping wings of hovering hummingbirds that usually probe many flowers per visit. Seed set did not differ between hand-, self- and cross-pollinated flowers, but these treatments set significantly more seeds than flowers naturally exposed to flower visitors. We suggest that the limitation observed in the reproductive success of this plant is not related to pollinator scarcity, but probably to the extreme frequency of visitation by territorial hummingbirds. We conclude that the costs and benefits of plant reproduction depend on the interaction strength between flowers and pollinators, and the assessment of nectar secretion dynamics, pollinator behaviour and plant breeding system allows clarification of the complexity of such associations.
Rupestrian grasslands are biodiverse, evolutionary old vegetation complexes that harbor more than 5000 species of vascular plants and one of the highest levels of plant endemism in the world. Growing on nutrient-impoverished soils and under harsh environmental conditions, these mountaintop ecosystems were once spared from major human interventions of agriculture and intensive cattle ranching. However, in Brazil, rupestrian grasslands have experienced one of the most extreme land use changes among all Brazilian ecosystems, suffering from ill policies leading to intense mining activities, uncontrolled tourism, and unplanned road construction. Indeed, the discovery of large mineral reserves, the adoption of ineffective conservation policies, and, going forward, climate change, are Communicated by David Hawksworth.
Ant-plant associations are an outstanding model to study the entangled ecological interactions that structure communities. However, most studies of plant-animal networks focus on only one type of resource that mediates these interactions (e.g, nectar or fruits), leading to a biased understanding of community structure. New approaches, however, have made possible to study several interaction types simultaneously through multilayer networks models. Here, we use this approach to ask whether the structural patterns described to date for ant-plant networks hold when multiple interactions with plant-derived food rewards are considered. We tested whether networks characterized by different resource types differ in specialization and resource partitioning among ants, and whether the identity of the core ant species is similar among resource types. We monitored ant interactions with extrafloral nectaries, flowers, and fruits, as well as trophobiont hemipterans feeding on plants, for one year, in seven rupestrian grassland (campo rupestre) sites in southeastern Brazil. We found a highly tangled ant-plant network in which plants offering different resource types are connected by a few central ant species. The multilayer network had low modularity and specialization, but ant specialization and niche overlap differed according to the type of resource used. Beyond detecting structural differences across networks, our study demonstrates empirically that the core of most central ant species is similar across them. We suggest that foraging strategies of ant species, such as massive recruitment, may determine specialization and resource partitioning in ant-plant interactions. As this core of ant species is involved in multiple ecosystem functions, it may drive the diversity and evolution of the entire campo rupestre community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.