The most significant barrier to success in human activity recognition is extracting and selecting the right features. In traditional methods, the features are chosen by humans, which requires the user to have expert knowledge or to do a large amount of empirical study. Newly developed deep learning technology can automatically extract and select features. Among the various deep learning methods, convolutional neural networks (CNNs) have the advantages of local dependency and scale invariance and are suitable for temporal data such as accelerometer (ACC) signals. In this paper, we propose an efficient human activity recognition method, namely Iss2Image (Inertial sensor signal to Image), a novel encoding technique for transforming an inertial sensor signal into an image with minimum distortion and a CNN model for image-based activity classification. Iss2Image converts real number values from the X, Y, and Z axes into three color channels to precisely infer correlations among successive sensor signal values in three different dimensions. We experimentally evaluated our method using several well-known datasets and our own dataset collected from a smartphone and smartwatch. The proposed method shows higher accuracy than other state-of-the-art approaches on the tested datasets.
Recently, social media have been used by researchers to detect depressive symptoms in individuals using linguistic data from users’ posts. In this study, we propose a framework to identify social information as a significant predictor of depression. Using the proposed framework, we develop an application called the Socially Mediated Patient Portal (SMPP), which detects depression-related markers in Facebook users by applying a data-driven approach with machine learning classification techniques. We examined a data set of 4350 users who were evaluated for depression using the Center for Epidemiological Studies Depression (CES-D) scale. From this analysis, we identified a set of features that can distinguish between individuals with and without depression. Finally, we identified the dominant features that adequately assess individuals with and without depression on social media. The model trained on these features will be helpful to physicians in diagnosing mental diseases and psychiatrists in analysing patient behaviour.
The user experience (UX) is an emerging field in user research and design, and the development of UX evaluation methods presents a challenge for both researchers and practitioners. Different UX evaluation methods have been developed to extract accurate UX data. Among UX evaluation methods, the mixed-method approach of triangulation has gained importance. It provides more accurate and precise information about the user while interacting with the product. However, this approach requires skilled UX researchers and developers to integrate multiple devices, synchronize them, analyze the data, and ultimately produce an informed decision. In this paper, a method and system for measuring the overall UX over time using a triangulation method are proposed. The proposed platform incorporates observational and physiological measurements in addition to traditional ones. The platform reduces the subjective bias and validates the user’s perceptions, which are measured by different sensors through objectification of the subjective nature of the user in the UX assessment. The platform additionally offers plug-and-play support for different devices and powerful analytics for obtaining insight on the UX in terms of multiple participants.
Activity recognition through smartphones has been proposed for a variety of applications. The orientation of the smartphone has a significant effect on the recognition accuracy; thus, researchers generally propose using features invariant to orientation or displacement to achieve this goal. However, those features reduce the capability of the recognition system to differentiate among some specific commuting activities (e.g., bus and subway) that normally involve similar postures. In this work, we recognize those activities by analyzing the vibrations of the vehicle in which the user is traveling. We extract natural vibration features of buses and subways to distinguish between them and address the confusion that can arise because the activities are both static in terms of user movement. We use the gyroscope to fix the accelerometer to the direction of gravity to achieve an orientation-free use of the sensor. We also propose a correction algorithm to increase the accuracy when used in free living conditions and a battery saving algorithm to consume less power without reducing performance. Our experimental results show that the proposed system can adequately recognize each activity, yielding better accuracy in the detection of bus and subway activities than existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.