This paper proposes a cooperative medium access control (MAC) protocol for underwater wireless sensor networks (UWSNs) named UCMAC, which fundamentally benefits from cooperative communication. In UCMAC, a source identifies cooperators and provides its destination with a list of the cooperators while also delineating their proximity to the destination. For erroneous reception of data packets, the destination then requests retransmission to the cooperators in a closest-one-first manner. A designated cooperator transmits the buffered data packet it has successfully overheard from the source or other cooperators. A signaling procedure and the various waiting times of the nodes are carefully designed to address the overheads that stem from cooperation. Through computer simulation, this paper evaluates UCMAC in terms of system throughput, latency, single-hop packet delivery ratio (PDR), and energy efficiency. The results show that UCMAC performs better than existing schemes, including MACA-U and CD-MACA.
In an underwater acoustic cellular (UAC) system, underwater equipment or sensor nodes need to detect the identity of an underwater base station (UBS) and synchronise it with a serving UBS. It is known that, in an underwater acoustic channel, the temporal variability of the ocean coupled with the low speed of sound in water may induce a significant Doppler shift. In this paper, two different types of cell search techniques (CSTs) are proposed to detect the cell ID and correct timing of the UBS in UAC systems with a Doppler shift: CST based on linear frequency modulation with full bandwidth in the time domain (LFM-FT) and CST based on linear frequency modulation in the frequency domain (LFM-FF). The performances (auto-correlation, cross-correlation, ambiguity function, and cross ambiguity function) of the proposed techniques are analysed and compared with simulation results. It is demonstrated by simulation that the proposed techniques perform better than previous techniques in both AWGN and multipath channels when a Doppler shift exists. It is also shown that the LFM-FF-CST achieves the best performance in the presence of a Doppler shift and is suitable for mobile UAC systems.
In underwater acoustic cellular (UWAC) systems, underwater equipment or sensor nodes (UE/SN) should perform downlink synchronisation and a cell search during the initial access stage using the preambles received from adjacent underwater base stations (UWBSs). The UE/SN needs to estimate accurate timing and cell ID (CID) using the received preambles, and synchronise with a serving UWBS, even in high-Doppler environments. In this paper, a sequence design technique for joint estimation of accurate timing and CID in UWAC systems with a high Doppler is proposed to decrease the receiver complexity and processing time. A generalised Zadoff–Chu sequence is proposed for the preamble design. This sequence is decomposed into multiple short sub-sequences to reduce the effect of Doppler shift on the timing and CID estimation. The performance loss caused by the short sequence length is compensated by combining the sub-sequences using the repetition property of the ZC sequence. The properties (autocorrelation and cross-correlation) of the proposed sequence are derived analytically in the presence of Doppler shift and compared with the simulation results. The simulation results reveal that the proposed technique performs better than existing techniques in both additive white Gaussian noise and multipath channels with a high-Doppler. It is concluded that the proposed technique is suitable for accurate timing estimation and CID detection in UWAC systems with a high Doppler.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.