This paper proposes a downlink synchronization and cell identity (CID) estimation technique for cellular systems based on orthogonal time-frequency space (OTFS). In the proposed technique, each base station (BS) transmits one detection preamble (DP) and two OTFS symbols (pilot and secondary-CID (SCID) signal (SS)). The DP based on a linear frequency-modulated (LFM) waveform, called proposed-LFM (pLFM), carries the primary-CID (PCID) for symbol timing (ST) synchronization, whereas the SS based on the Zadoff-Chu (ZC) sequence mapped in the delay-Doppler domain carries the SCID. The pLFM is obtained by discretizing the LFM waveform, increasing the frequency sweeping parameter beyond the limit of the operational bandwidth, and incorporating the PCID into the LFM waveform. The autocorrelation and cross-correlation functions of the pLFM are analyzed to examine its correlation properties under the influence of a high Doppler shift. To reduce the undesirable correlation properties (side peak and time ambiguity), a receiver processing (RP) scheme is developed for the pLFM. It is found that the pLFM with RP is suitable for the DP design because it can provide an accurate ST in high-mobility scenarios. In addition, the influence of OTFS modulation on the ZC sequence is derived and a low-complexity detection algorithm based on message passing is applied to detect SCID at the user equipment. The simulation results demonstrate that the proposed downlink synchronization and CID estimation techniques are suitable for OTFS-based cellular systems in high-Doppler environments.
The beam search protocol in cellular systems requires a significant amount of search time and network resources in order to select a serving base station with the optimal beam pair. In 3D beamforming, the processing time increases significantly because the azimuth and elevation angles need to be considered during beam search. In this paper, we propose a fast 3D beamforming technique for millimeter wave (mmWave) cellular systems with a uniform planar array (UPA). In the proposed technique, the beam search time is reduced significantly by decomposing a UPA into a set of horizontal/vertical uniform linear arrays (ULAs), from which the optimal beam direction in azimuth/elevation angle is obtained. Two types of signals, Zadoff-Chu sequence and linear frequency modulated waveform are used for designing the beam search preamble (BSP), which allows a mobile user to distinguish beams in multi-cell multi-beam environments. The strengths and weaknesses of the two proposed BSPs are analyzed after performing simulation using a simple mmWave cellular system model with UPA. Furthermore, it is demonstrated that the proposed technique significantly reduces the beam search time, i.e., number of beam scans, as compared with the conventional technique. INDEX TERMS Fast 3D beamforming, millimeter wave, uniform planar array, beam search preamble
In this paper, a cell selection technique for millimeter-wave (mm-wave) cellular systems with hybrid beamforming is proposed. To select a serving cell, taking into account hybrid beamforming structures in a mm-wave cellular system, the angles of arrival and departure for all candidate cells need to be estimated in the initialization stage, requiring a long processing time. To enable simultaneous multi-beam transmissions in a multi-cell environment, a cell and beam synchronization signal (CBSS) is proposed to carry beam IDs in conjunction with cell IDs. A serving cell maximizing the channel capacity of the hybrid beamformer is selected with the estimated channel information and the optimum precoder. The performance of the proposed technique is evaluated by a computer simulation with a spatial channel model in a simple model of a mm-wave cellular system. It is shown by simulation that the proposed technique with the CBSS can significantly reduce the processing time for channel estimation and cell selection, and can achieve additional gains in channel capacity, or in bit error rate, compared to that obtained by conventional techniques.
In an underwater acoustic cellular (UAC) system, underwater equipment or sensor nodes need to detect the identity of an underwater base station (UBS) and synchronise it with a serving UBS. It is known that, in an underwater acoustic channel, the temporal variability of the ocean coupled with the low speed of sound in water may induce a significant Doppler shift. In this paper, two different types of cell search techniques (CSTs) are proposed to detect the cell ID and correct timing of the UBS in UAC systems with a Doppler shift: CST based on linear frequency modulation with full bandwidth in the time domain (LFM-FT) and CST based on linear frequency modulation in the frequency domain (LFM-FF). The performances (auto-correlation, cross-correlation, ambiguity function, and cross ambiguity function) of the proposed techniques are analysed and compared with simulation results. It is demonstrated by simulation that the proposed techniques perform better than previous techniques in both AWGN and multipath channels when a Doppler shift exists. It is also shown that the LFM-FF-CST achieves the best performance in the presence of a Doppler shift and is suitable for mobile UAC systems.
In this paper, a random access preamble (RAP) design technique for underwater acoustic cellular systems is proposed. After showing that the conventional RAP used in long term evolution (LTE) systems is not appropriate for underwater acoustic cellular systems, two different types of RAPs (RAP 1 and RAP 2) are proposed to detect the identity of underwater equipment/nodes (UEs) and estimate the time delay between a UE and an underwater base station (UBS) at the physical layer. RAP 1 is generated using a Zadoff-Chu (ZC) sequence where the identity of the UE is mapped to its root index, whereas RAP 2 is generated using a linear frequency modulation (LFM) waveform where the identity of the UE is mapped to its frequency sweeping parameter and frequency shifting parameter. Ambiguity functions (AFs) and cross-ambiguity functions (CAFs) of RAP 1 and RAP 2 are derived to investigate their correlation properties under the effect of time delay and Doppler shift. The performance of RAP detection is investigated by analyzing the detection probabilities and false alarm probabilities of RAP 1 and RAP 2 in a Doppler environment. By evaluating the performances of RAP 1 and RAP 2 in various situations, it is concluded that RAP 2 is more suitable for underwater acoustic cellular systems. The AF and CAF analytically obtained in this paper are shown to be similar to those obtained using experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.