Researches on Ultra High Performance Concrete (UHPC) have been conducted worldwide owing to its outstanding durability and strength performances compared to those of normal concrete. The application of UHPC to prestressed concrete structures, which may seem to be the most appropriate and beneficial, may result significant improvement in the design of anchorage zones due to its high compressive and tensile strength. The size of anchorage blocks and amounts of reinforcements may be reduced drastically. This paper examines the stress magnitudes and distributions of post-tensioned anchorage zones using UHPC which have nominal compressive strength levels of 120, 150 and 180 MPa respectively, by FE analysis. The analytic results are verified with the existing experimental work of 180MPa UHPC. It can be concluded that the use of UHPC to post-tensioned members gives significant reduction of anchorage zone size and no reinforcements are required.
In this paper, the improved power durability test system and method for an reliability analysis of SAW device is proposed and the failure mechanism through failure analysis is analyzed. As a result of the failure analysis using microscope, SEM and EDX, the failure mechanism of the SAW device is electromigration due to joule heating under high current density and high temperature condition. The electromigration makes voids and hillocks in the IDT electrode and the voids and hillocks can lead to short circuit and open circuit faults, respectively, increasing the insertion loss of an SAW filter. The accelerated life testing of the SAW filter for 450MHz CDMA application using the proposed power durability test system and method is carried out. B10 lifetime of the SAW filter using Eyring model and Weibull distribution is estimated as about 98,500 hours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.