α-Endosulfan and some polycyclic aromatic compounds (PAHs) are persistent in the environment and can reach crop products via contaminated agricultural soils. They may even be present as mixtures in the soil and induce mixture toxicity in soil organisms such as earthworms. In this study, the combined toxicities of PAHs with α-endosulfan were determined in Eisenia fetida adults using an artificial soil system. α-Endosulfan and five PAHs were tested for their acute toxicity toward E. fetida in artificial soils. Only α-endosulfan, fluorene, and phenanthrene showed acute toxicities, with LC values of 9.7, 133.2, and 86.2 mg kg, respectively. A mixture toxicity assay was conducted using α-endosulfan at LC and fluorene or phenanthrene at LC in the artificial soils. Upon exposure to the mixture of fluorene and α-endosulfan, earthworms were killed in increasing numbers owing to their synergistic effects, while no other mixture showed any additional toxicity toward the earthworms. Along with the acute toxicity results, the biochemical and molecular changes in the fluorene- and phenanthrene-treated earthworms with or without α-endosulfan treatment demonstrated that enhancement of glutathione S-transferase activity was dependent on the addition of PAH chemicals, and the HSP70 gene expression increased with the addition of α-endosulfan. Taken together, these findings contribute toward understanding the adverse effects of pollutants when present separately or in combination with other types of chemicals.
Polycyclic aromatic hydrocarbon (PAH) compounds are persistent, carcinogenic, and mutagenic. When PAHs enter agricultural soils through sewage sludge, they pose an environmental risk to soil organisms, including earthworms. Therefore, we aimed to determine the toxic effects of PAHs on earthworms. Five PAHs were used: fluorene, anthracene, phenanthrene, fluoranthene, and pyrene. Only fluorene and phenanthrene exhibited toxicity (LC50 values 394.09 and 114.02 g L(-1), respectively) against the earthworm Eisenia fetida. None of the other PAHs tested in this study enhanced the mortality of adult earthworm until the concentrations reached to 1000 g L(-1). After exposure to PAHs, acetylcholinesterase (AChE) activity in E. fetida decreased in a concentration-dependent manner, and phenanthrene exhibited the strongest inhibitory effect on AChE, followed by fluorene. Activity of a representative detoxifying enzyme, carboxylesterase, was dramatically reduced in E. fetida exposed to all tested PAHs in comparison with that observed in the control test. The remaining glutathione S-transferase activity significantly decreased in E. fetida after exposure to PAHs. To profile small proteins <20 kDa, SELDI-TOF MS with Q10 ProteinChips was used, and 54 proteins were identified as being significantly different from the control (p = 0.05). Among them, the expressions of three proteins at 4501.8, 4712.4, and 4747.9 m/z were only enhanced in E. fetida exposed to anthracene and pyrene. One protein with 16,174 m/z was selectively expressed in E. fetida exposed to fluorene, phenanthrene, and fluoranthene. These proteins may be potential biomarkers for the five PAHs tested in E. fetida.
Endosulfan has been listed as a persistent organic pollutant, and is frequently found in agricultural environments during monitoring processes owing to its heavy use and persistent characteristics. This study was conducted to understand the effects of endosulfan on the development of zebrafish (Danio rerio) embryos by exposing them to a specific range of endosulfan concentrations. Exposing zebrafish embryos to endosulfan for 96 h yielded no acute toxicity until the concentration reached 1500 μg L −1 , whereas malformed zebrafish larvae developed severely curved spines and shortened tails. About 50% of zebrafish larvae were malformed when exposed to 600 μg L −1 of endosulfan. Comparative gene expression using realtime quantitative polymerase chain reaction was assessed using endosulfan-exposed zebrafish embryos. CYP1A and CYP3A were significantly enhanced in response to endosulfan treatment. Two genes, acacb and fasn, encoding acetyl-CoA carboxylase b and fatty acid synthase proteins, respectively, were also up-regulated after treating zebrafish embryos with endosulfan. These genes are also involved in fatty acid biosynthesis. The genes encoding vitellogenin and Hsp70 increased in a concentration-dependent manner in embryos. Finally, biochemical studies showed that acetylcholinesterase activity was reduced, whereas glutathione S-transferase and carboxylesterase activities were enhanced in zebrafish embryos after endosulfan treatment. These biochemical and molecular biological differences might be used for tools to determine contamination of endosulfan in the aquatic environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.