A high angular tolerance spectral filter was realized incorporating an etalon, which consists of a TiO2 cavity sandwiched between a pair of Ag/Ge mirrors. The effective angle was substantially extended thanks to the cavity's high refractive index. The device was created by embedding a 313-nm thick TiO2 film in 16-nm thick Ag/Ge films through sputtering, with the Ge layer alleviating the roughness and adhesion of the Ag layer. For normal incidence, the observed center wavelength and transmission were ~900 nm and ~60%, respectively; throughout the range of 50°, the relative wavelength shift and transmission variation amounted to only ~0.06 and ~4%, respectively.
A highly angle tolerant spectral filter has been implemented taking advantage of three-stage serially concatenated resonators in dielectric films, each of which involves a high-index cavity in a-Si, sandwiched with a pair of SiO2 films. For the constituent etalons, the free spectral range is individually adjusted by differentiating the thickness of the cavity, so that a primary infrared pass-band could be attained to present enhanced roll-off characteristics in conjunction with an appropriate bandwidth. The a-Si cavities relating to the three etalons are selected to be 117, 234, and 468-nm thick, while the SiO2 layer is uniformly 150-nm thick. The filter is actually created on a silica glass substrate, by alternately depositing SiO2 and a-Si films. The observed center wavelength, bandwidth, and peak transmission efficiency are about 900 nm, 120 nm, and over 90%, respectively, for normal incidence. In response to an angle change amounting to 60°, the relative wavelength shift and the variation in peak transmission become barely 0.03 and 8%, respectively. Finally, a detecting cell is constructed by integrating the prepared filter with a photodiode, thus rendering a 3-dB angular bandwidth of 90°. By adequately arranging three detecting cells in a fixture, a compact, portable optical receiver could then be constructed. For incoming collimated light at λ = 905 nm, the infrared receiver exhibits an extended 3-dB angular acceptance as large as 160°.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.