HuC encodes an RNA binding protein homologous to Drosophila elav that serves as an excellent early marker for differentiating neurons. We have characterized the promoter of the zebrafish HuC gene by examining the ability of 5'-upstream fragments to drive expression of green fluorescent protein (GFP) in live embryos. We determined that 2.8 kb of the 5'-flanking sequence is sufficient to restrict GFP gene expression to neurons. The core promoter spans 251 base pairs and contains a CCAAT box and one SP1 sequence but no TATA box is present near the transcription start site. A putative MyT1 binding site and at least 17 E-box sequences are necessary to maintain the neuronal specificity of HuC expression. Interestingly, sequential removal of the putative MyT1 binding site and 14 distal E boxes does not appear to abolish neuronal expression; rather, it leads to a progressive expansion of GFP expression into muscle cells. Further removal of the three proximal E boxes eliminates neuronal and muscle specificity of GFP expression and leads to ubiquitous expression of GFP in the whole body. Identification of key components of the HuC promoter has led to the establishment of a stable zebrafish transgenic line (HuC-GFP) in which GFP is expressed specifically in neurons. We crossed mind bomb (mib) fish with this line to visualize their neurogenic phenotype in live mib(-/-) mutant embryos. This cross illustrates how HuC-GFP fish could be used in the future to identify and analyze zebrafish mutants with an aberrant pattern of early neurons.
In Drosophila melanogaster, Slit acts as a repulsive cue for the growth cones of the commissural axons which express a receptor for Slit, Roundabout (Robo), thus preventing the commissural axons from crossing the midline multiple times. Experiments using explant culture have shown that vertebrate Slit homologues also act repulsively for growth cone navigation and neural migration, and promote branching and elongation of sensory axons. Here, we demonstrate that overexpression of Slit2 in vivo in transgenic zebrafish embryos severely affected the behavior of the commissural reticulospinal neurons (Mauthner neurons), promoted branching of the peripheral axons of the trigeminal sensory ganglion neurons, and induced defasciculation of the medial longitudinal fascicles. In addition, Slit2 overexpression caused defasciculation and deflection of the central axons of the trigeminal sensory ganglion neurons from the hindbrain entry point. The central projection was restored by either functional repression or mutation of Robo2, supporting its role as a receptor mediating the Slit signaling in vertebrate neurons. Furthermore, we demonstrated that Islet-2, a LIM/homeodomain-type transcription factor, is essential for Slit2 to induce axonal branching of the trigeminal sensory ganglion neurons, suggesting that factors functioning downstream of Islet-2 are essential for mediating the Slit signaling for promotion of axonal branching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.