The seriousness of water related issues is increasing due to regional imbalances of water use and damages from water related disasters. Various technologies are being applied to resolve water related issues. Recently, interest in SWM, water management methods converging with ICT, is increasing. K-water, as a Korean government owned corporation, suggested SWMI as a new paradigm to resolve water related issues by converging K-water's experienced water management know-how with advanced ICT. SWMI is an integrated management model covering the entire water cycle from sources to tap for securing the stability, safety and efficiency of water. At the same time, a 3-step strategy consisting of technology development, standardization and standardized frame for application of technologies was established to implement SWMI. It is expected that SWMI will enable scientific and efficient water management by interacting of technologies converged with ICT for entire water cycle from sources to tap water.
Streamflow is composed of baseflow and direct runoff. However, most of streamflow during dry seasons depends on baseflow. Thus, baseflow analysis is very important to simulate streamflow of dry seasons. Generally, baseflow analysis is conducted using watershed-scale runoff models due to diffilculty of measuring baseflow. However, it is needed to understand and review how the model simulates baseflow because each model uses inherent baseflow analysis techniques. In this study, SWAT, HSPF, PRMS-IV were reviewed focusing on baseflow and soil water. HSPF and PRMS-IV calculate baseflow using the variables which depends on user, so the baseflow analysis results of HSPF and PRMS-IV are not consistent. Moreover, soil structures which were assumed from HSPF and PRMS-IV, since these two models assume soil structure as two soil zones and three conceptual reservoirs, were not enough to describe real soil structure. On the other hand, baseflow in SWAT is calculated using baseflow recession constant which can consider the characteristics of aquifer and also, soil structure in SWAT is similar to real soil structures. Thus, baseflow analysis result from SWAT was concluded as the most suitable and reliable model because SWAT can reflect the characteristics and soil structure which is close to reality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.