The objective of this study is to assess plastic deformation in aluminium alloy by acoustic nonlinearity of laser-generated surface waves. A line-arrayed laser beam made by high-power pulsed laser and mask slits is utilized to generate the narrowband surface wave and the frequency characteristics of laser-generated surface waves are controlled by varying the slit opening width and slit interval of mask slits. Various degrees of tensile deformation were induced by interrupting the tensile tests so as to obtain aluminum specimens with different degrees of plastic deformation. The experimental results show that the acoustic nonlinear parameter of a laser-generated surface wave increased with the level of tensile deformation and it has a good correlation with the results of micro-Vickers hardness test and electron backscatter diffraction (EBSD) test. Consequently, acoustic nonlinearity of laser-generated surface wave could be potential to characterize plastic deformation of aluminum alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.