Reported herein is the iridium-catalyzed direct amidation of unactivated sp(3) C-H bonds. With sulfonyl and acyl azides as the amino source, the amidation occurs efficiently under mild conditions over a wide range of unactivated methyl groups with high functional group tolerance. This procedure can be successfully applied for the direct introduction of an amino group into complex compounds and thus can serve as a powerful synthetic tool for late-stage C-H functionalization.
Herein a new synthetic route to 1,2-amino alcohols is presented by using C-H amidation of sp(3) methyl C-H bonds as a key step. Readily available alcohols were employed as starting materials after converting them to removable ketoxime chelating groups. Iridium catalysts were found to be effective for the C-H amidation, and LAH reduction was then used to furnish β-amino alcohol products.
The first total synthesis of (-)-crinipellin A is described. The tetraquinane core skeleton of crinipellin A was assembled through the tandem [2 + 3] cycloaddition reaction of an allenyl diazo substrate containing a cyclopentane ring in a single operation. The absolute stereochemistry was confirmed through the total synthesis.
The first total synthesis of waihoensene, a tetracyclic diterpene containing an angular triquinane and a six-membered ring, with four contiguous quaternary carbon atoms, was achieved through the tandem cycloaddition reaction of an allenyl diazo substrate containing a six-membered ring via trimethylenemethane (TMM) diyl intermediate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.