Traditionally, two approaches have been employed for structural equation modeling: covariance structure analysis and partial least squares. A third alternative, generalized structured component analysis, was introduced recently in the psychometric literature. The authors conduct a simulation study to evaluate the relative performance of these three approaches in terms of parameter recovery under different experimental conditions of sample size, data distribution, and model specification. In this study, model specification is the only meaningful condition in differentiating the performance of the three approaches in parameter recovery. Specifically, when the model is correctly specified, covariance structure analysis tends to recover parameters better than the other two approaches. Conversely, when the model is misspecified, generalized structured component analysis tends to recover parameters better. Finally, partial least squares exhibits inferior performance in parameter recovery compared with the other approaches. In particular, this tendency is salient when the model involves cross-loadings. Thus, generalized structured component analysis may be a good alternative to partial least squares for structural equation modeling and is recommended over covariance structure analysis unless correct model specification is ensured.
The high-volume synthesis of two-dimensional (2D) materials in the form of platelets is desirable for various applications. While water is considered an ideal dispersion medium, due to its abundance and low cost, the hydrophobicity of platelet surfaces has prohibited its widespread use. Here we exfoliate 2D materials directly in pure water without using any chemicals or surfactants. In order to exfoliate and disperse the materials in water, we elevate the temperature of the sonication bath, and introduce energy via the dissipation of sonic waves. Storage stability greater than one month is achieved through the maintenance of high temperatures, and through atomic and molecular level simulations, we further discover that good solubility in water is maintained due to the presence of platelet surface charges as a result of edge functionalization or intrinsic polarity. Finally, we demonstrate inkjet printing on hard and flexible substrates as a potential application of water-dispersed 2D materials.
Due to its strong correlation with the pathophysiology of many diseases, information about human red blood cells (RBCs) has a crucial function in hematology. Therefore, measuring and understanding the morphological, chemical, and mechanical properties of individual RBCs is a key to understanding the pathophysiology of a number of diseases in hematology, as well as to opening up new possibilities for diagnosing diseases in their early stages. In this study, we present the simultaneous and quantitative measurement of the morphological, chemical, and mechanical parameters of individual RBCs employing optical holographic microtomography. In addition, it is demonstrated that the correlation analyses of these RBC parameters provide unique information for distinguishing and understanding diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.