Objective: Diagnosis and assessment of depression rely on scoring systems based on questionnaires, either self-reported by patients or administered by clinicians, and observation of patient facial expressions during the interviews plays a crucial role in making impressions in clinical settings. Deep learning driven approaches can assist clinicians in the course of diagnosis of depression by recognizing subtle facial expressions and emotions in depression patients. Methods: Seventeen simulated patients who acted as depressed patients participated in this study. A trained psychiatrist structurally interviewed each participant with moderate depression in accordance with a prepared scenario and without depressive features. Interviews were video-recorded, and a facial emotion recognition algorithm was used to classify emotions of each frame. Results: Among seven emotions (anger, disgust, fear, happiness, neutral, sadness, and surprise), sadness was expressed in a higher proportion on average in the depression-simulated group compared to the normal group. Neutral and fear were expressed in higher proportions on average in the normal group compared to the normal group. The overall distribution of emotions between the two groups was significantly different (p < 0.001). Variance in emotion was significantly less in the depression-simulated group (p < 0.05). Conclusion: This study suggests a novel and practical approach to understand the emotional expression of depression patients based on deep learning techniques. Further research would allow us to obtain more perspectives on the emotional profiles of clinical patients, potentially providing helpful insights in making diagnosis of depression patients.
This is the fourth volume of the successful series Robot Operating Systems: The Complete Reference, providing a comprehensive overview of robot operating systems (ROS), which is currently the main development framework for robotics applications, as well as the latest trends and contributed systems. The book is divided into four parts: Part 1 features two papers on navigation, discussing SLAM and path planning. Part 2 focuses on the integration of ROS into quadcopters and their control. Part 3 then discusses two emerging applications for robotics: cloud robotics, and video stabilization. Part 4 presents tools developed for ROS; the first is a practical alternative to the roslaunch system, and the second is related to penetration testing. This book is a valuable resource for ROS users and wanting to learn more about ROS capabilities and features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.