Inertial navigation systems/Doppler velocity log (INS/DVL) integrated navigation systems are widely used in underwater environments where GPS is unavailable. An INS/DVL integrated navigation system is generally loosely coupled; however, this does not work if any of the DVL transducers do not work. If a system is tightly coupled, velocity error can be estimated with fair accuracy even if some of the transducers fail. However, despite the robustness of a tightly coupled system compared to a loosely coupled one, velocity error estimation accuracy of the former decreases as the number of faulty transducers increases. Therefore, this paper proposes an INS/DVL/revolutions per minute (RPM) integrated navigation filter designed to improve the performance of conventional tightly coupled integrated systems by estimating data from faulty transducers using RPM data. Two salient features of the proposed filter are (1) estimating RPM data accounting for error from the effect of tidal currents and (2) continuous estimation of error in RPM data by selectively converting only the measurements of faulty transducers. The performance of the proposed filter was first verified using Monte Carlo numerical simulations with the analysis range set to 1 standard deviation (1σ, 68%) and then with real sea test measurement data.
Because the global positioning system (GPS) is not available in underwater environments, an inertial navigation system (INS)/doppler velocity log (DVL) integrated navigation system is generally implemented. In general, an INS/DVL integrated system adopts a loosely coupled method. However, in this loosely coupled method, although the measurement equation for the filter design is simple, the velocity of the body frame cannot be accurately measured if even one of the DVL transducer signals is not received. In contrast, even if only one or two velocities are measured by the DVL transducers, the tightly coupled method can utilize them as measurements and suppress the error increase of the INS. In this paper, a filter was designed to regenerate the measurements of failed transducers by taking advantage of the tightly coupled method. The regenerated measurements were the normal DVL transducer measurements and the estimated velocity in RPM. In order to effectively estimate the velocity in RPM, a filter was designed considering the effects of the tide. The proposed filter does not switch all of the measurements to RPM if the DVL transducer fails, but only switches information from the failed transducer. In this case, the filter has the advantage of being able to be used as a measurement while continuously estimating the RPM error state. A Monte Carlo simulation was used to determine the performance of the proposed filters, and the scope of the analysis was shown by the standard deviation (1σ, 68%). Finally, the performance of the proposed filter was verified by comparison with the conventional tightly coupled method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.