Arterial restenosis following stent deployment may be influenced by the local flow environment within and around the stent. We have used computational fluid dynamics to investigate the flow field in the vicinity of model stents positioned within straight and curved vessels. Our simulations have revealed the presence of flow separation and recirculation immediately downstream of stents. In steady flow within straight vessels, the extent of flow disturbance downstream of the stent increases with both Reynolds number and stent wire thickness but is relatively insensitive to stent interwire spacing. In curved vessels, flow disturbance downstream of the stent occurs along both the inner and outer vessel walls with the extent of disturbance dependent on the angle of vessel curvature. In pulsatile flow, the regions of flow disturbance periodically increase and decrease in size. Non-Newtonian fluid properties lead to a modest reduction in flow disturbance downstream of the stent. In more realistic stent geometries such as stents modeled as spirals or as intertwined rings, the nature of stent-induced flow disturbance is exquisitely sensitive to stent design. These results provide an understanding of the flow physics in the vicinity of stents and suggest strategies for stent design optimization to minimize flow disturbance.
Integrated gasification combined cycle (IGCC) is one of the candidates to achieve stringent environmental regulation among the clean coal technologies. Advancing the technology of the hot gas cleanup systems is the most critical component in the development of the IGCC. Thus tile aim of this study is to understand the flow field in the ceramic filter and the influence of ceramic filter in removal of the particles contained in the hot gas flow. The numerical model based on the Reynolds stress turbulence model with the Darcy's law in the porous region is adopted. It is found that the effect of the porosity in the flowfield is negligibly small while the effect of the filter length is significant. It is also found as the permeability decreases, the reattachment point due to the flow separation moves upstream. This is because the fluid is sucked into the filter region due to the pressure drop before the flow separation occurs. The particle follows well with the fluid stream and the particle is directly sucked into the filter due to the pressure drop even in the flow separation region.
We present a three-dimensional mathematical model for the study of radiofrequency ablation (RFA) with blood flow for varicose vein. The model designed to analyze temperature distribution heated by radiofrequency energy and cooled by blood flow includes a cylindrically symmetric blood vessel with a homogeneous vein wall. The simulated blood velocity conditions are U = 0, 1, 2.5, 5, 10, 20, and 40 mm/s. The lower the blood velocity, the higher the temperature in the vein wall and the greater the tissue damage. The region that is influenced by temperature in the case of the stagnant flow occupies approximately 28.5% of the whole geometry, while the region that is influenced by temperature in the case of continuously moving electrode against the flow direction is about 50%. The generated RF energy induces a temperature rise of the blood in the lumen and leads to an occlusion of the blood vessel. The result of the study demonstrated that higher blood velocity led to smaller thermal region and lower ablation efficiency. Since the peak temperature along the venous wall depends on the blood velocity and pullback velocity, the temperature distribution in the model influences ablation efficiency. The vein wall absorbs more energy in the low pullback velocity than in the high one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.